Proving the Integral of a Limit of a Function

psid
Messages
14
Reaction score
0

Homework Statement



How does one prove that \int^\infty_{-\infty}\lim_{\epsilon \rightarrow 0}(1/\pi)\frac{\epsilon g(x)}{(x-a)^{2}+\epsilon^{2}}dx=g(a)?
 
Physics news on Phys.org
psid said:

Homework Statement



How does one prove that \int^\infty_{-\infty}\lim_{\epsilon \rightarrow 0}(1/\pi)\frac{\epsilon g(x)}{(x-a)^{2}+\epsilon^{2}}dx=g(a)?

One doesn't, since the result isn't true. The limit has to be outside the integral sign.

Mathematical Physics by Butkov has a nice proof on pages 238-239. The idea is, for positive \epsilon to write

\lim_{\epsilon \rightarrow 0} \int_{-\infty}^\infty = \lim_{\epsilon \rightarrow 0} \int_{-\infty}^{a-\epsilon} + lim_{\epsilon \rightarrow 0} \int_{a-\epsilon}^{a+\epsilon} + lim_{\epsilon \rightarrow 0} \int_{a+\epsilon}^{\infty},

and then to assume g is bounded to show that the first and last terms go to zero.

For \epsilon small and g continuous, g(x) is approximately equal to the constant value g(a) over the middle interval, so pull this outside of the middle integral, or, more rigorously, use the mean value theorem for integrals.
 
Thanks, got it right now. The limit was indeed before the integral sign.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top