Proving the Last Term in the Poincaré Group Lie Algebra Identity

malaspina
Messages
2
Reaction score
0

Homework Statement



The problem statement is to prove the following identity (the following is the solution provided on the worksheet):

BCaSwpm.png


Homework Equations



The definitions of L_{\mu \nu} and P_{\rho} are apparent from the first line of the solution.

The Attempt at a Solution



I get to the second line and calculate the commutators explicitly:

-i\hbar(\partial_{\rho}x_{\mu}-x_{\mu}\partial_{\rho})P_{\nu}+i\hbar(\partial_{\rho}x_{\nu}-x_{\nu}\partial_{\rho})P_{\mu}

The derivatives of the coordinates give the metric tensor e.g. \partial_{\rho}x_{\mu}=g_{\rho \mu}

Calculating the derivatives of the coordinates and rearranging I get:

-i\hbar g_{\rho \mu}P_{\nu}+i \hbar g_{\rho \nu}P_{\mu} +i\hbar(x_{\mu}\partial_{\rho}P_{\nu}-x_{\nu}\partial_{\rho}P_{\mu})

The first two terms are the solution I'm looking for, so I'd deduce the last term should be equal to zero.

Is this correct? and if it is, how do I prove that the last term is in fact equal to zero?
 
Physics news on Phys.org
malaspina said:
Calculating the derivatives of the coordinates and rearranging I get:

-i\hbar g_{\rho \mu}P_{\nu}+i \hbar g_{\rho \nu}P_{\mu} +i\hbar(x_{\mu}\partial_{\rho}P_{\nu}-x_{\nu}\partial_{\rho}P_{\mu})

The first two terms are the solution I'm looking for, so I'd deduce the last term should be equal to zero.

The last term should not be there. You need to be careful when evaluating -i\hbar(\partial_{\rho}x_{\mu}-x_{\mu}\partial_{\rho})P_{\nu}+i\hbar(\partial_{\rho}x_{\nu}-x_{\nu}\partial_{\rho})P_{\mu}

For example, if you bring in the ##P_{\nu}## in the first term you get ##-i\hbar(\partial_{\rho}x_{\mu}P_{\nu}-x_{\mu}\partial_{\rho}P_{\nu})##

The first term in the parentheses should be interpreted as ##\partial_{\rho}(x_{\mu}P_{\nu})## where the derivative acts on the product of ##x_\mu## and ##P_{\nu}##.
 
TSny said:
The last term should not be there. You need to be careful when evaluating -i\hbar(\partial_{\rho}x_{\mu}-x_{\mu}\partial_{\rho})P_{\nu}+i\hbar(\partial_{\rho}x_{\nu}-x_{\nu}\partial_{\rho})P_{\mu}

For example, if you bring in the ##P_{\nu}## in the first term you get ##-i\hbar(\partial_{\rho}x_{\mu}P_{\nu}-x_{\mu}\partial_{\rho}P_{\nu})##

The first term in the parentheses should be interpreted as ##\partial_{\rho}(x_{\mu}P_{\nu})## where the derivative acts on the product of ##x_\mu## and ##P_{\nu}##.
Jesus, I was completely dumbfounded and it was so obvious. Now that I've re-done it I don't even know how I was missing it. Thank you a lot!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top