drawar
- 130
- 0
Homework Statement
Using the epsilon and delta definition, prove that:
\mathop {\lim }\limits_{x \to - 3} \sqrt {{x^2} + 16} = 5
Homework Equations
The Attempt at a Solution
Given epsilon > 0. Choose \delta {\rm{ = min}}\left\{ {{\rm{1,}}\frac{{\left( {5 + \sqrt {20} } \right)\varepsilon }}{7}} \right\}, then:
0 < \left| {x + 3} \right| < \delta \Rightarrow \left| {\sqrt {{x^2} + 16} - 5} \right| = \frac{{\left| {x + 3} \right|.\left| {x - 3} \right|}}{{5 + \sqrt {{x^2} + 16} }}
Moreover, \left| {x + 3} \right| < 1 \Rightarrow \left| {x - 3} \right| < 7 and 5 + \sqrt {{x^2} + 16} > 5 + \sqrt {20}
Hence, \frac{{\left| {x + 3} \right|.\left| {x - 3} \right|}}{{5 + \sqrt {{x^2} + 16} }} < \frac{{\frac{{\left( {5 + \sqrt {20} } \right)\varepsilon }}{7}.7}}{{5 + \sqrt {20} }} = \varepsilon .This completes the proof.
Please correct if there's anything wrong with it. Thanks!
Last edited: