Proving -|x|<x<|x|: A Homework Statement

  • Thread starter Thread starter chocolatelover
  • Start date Start date
chocolatelover
Messages
238
Reaction score
0

Homework Statement


Prove that -|x|< or equal to x< or equal to|x|


Homework Equations





The Attempt at a Solution



I know that it is true by this example:

x=5

-5<or equal to |5|<or equal to |5|

it also hold true for x=-5

Could someone please show me or give me a hint on how to prove this?

Thank you very much
 
Physics news on Phys.org
Divide and conquer: Analyze what happens when x > 0, x < 0 and x = 0.
 
Thank you very much

Regards
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top