gnome
- 1,031
- 1
Given that XOR is defined by ((X \wedge \neg Y) \vee (\neg X \wedge Y)), in order to prove that XOR is commutative is it sufficient to prove that
((X \wedge \neg Y) \vee (\neg X \wedge Y)) \supset ((Y \wedge \neg X) \vee (\neg Y \wedge X))
is a tautology?
((X \wedge \neg Y) \vee (\neg X \wedge Y)) \supset ((Y \wedge \neg X) \vee (\neg Y \wedge X))
is a tautology?