Calculating Q-Factor and Resistance for Series LC Filters

  • Thread starter Thread starter Mzzed
  • Start date Start date
  • Tags Tags
    Resistance
AI Thread Summary
To calculate the Q-factor for a series LC filter, both the resistance of the inductor and capacitor, as well as the load resistance, should be included. An equivalent circuit should be created using the DC resistance of each component along with load and source resistance, allowing for the calculation of effective DC resistance via Thevenin's theorem. The Q-factor is defined specifically around the resonant frequency, and it's important to consider the operating frequency resistance due to factors like skin effect and dielectric losses. The capacitor typically has a parallel loss resistance that needs to be converted into an equivalent series loss resistance for accurate calculations. Understanding these components is crucial for effective filter design.
Mzzed
Messages
67
Reaction score
5
I am trying to calculate the correct component values to use in a simple series LC filter, however I am not sure which value of resistance is to be included in these equations. When talking about a series LC filter, is the resistance required for calculating q factor the resistance of the inductor and capacitor? Or is it what ever the load resistance is further down the line in the circuit?

Thanks!
 
Engineering news on Phys.org
Mzzed said:
the resistance of the inductor and capacitor? Or is it what ever the load resistance is further down the line in the circuit?
Both.
Create an equivalent circuit using the DC resistance of each component, load, and source resistance.
Calculate the effective DC resistance of all series and parallel branches combined (Thevenin Equivalent). Use that resistance to calculate the Q.
Note that in this sense, Q is defined only around the resonant frequency.

Cheers,
Tom
 
  • Like
Likes Mzzed
Normally, the capacitor has a loss resistance Rp in parallel to the capacitance.
Therefore, in order to combine this resistance Rp with the series loss resistance of the inductor Ri, the value of Rp (relatively large) must be transferred into an equivalent (small) series loss resistance Rs.
 
  • Like
Likes Mzzed
Thankyou both, exact answers I needed, really appreciate it!
 
Tom.G said:
Both.
Create an equivalent circuit using the DC resistance of each component, load, and source resistance.
Calculate the effective DC resistance of all series and parallel branches combined (Thevenin Equivalent). Use that resistance to calculate the Q.
Note that in this sense, Q is defined only around the resonant frequency.

Cheers,
Tom
Apart from simple textbook questions, I think you need to use the resistance at the operating frequency, because DC and AC resistance differ due to skin effect and dielectric losses.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...

Similar threads

Back
Top