neu
- 228
- 3
I understand the following:
The cross section \frac{d\sigma}{d(cos \theta )} (e^+e^- \rightarrow \mu^+ \mu^-) \propto 1 + cos^2 \theta for a purely vectorial (electromagnetic) interaction. Hence \sigma is expected to be symetric in cos \theta.
The axial vector (weak) coupling of the Z boson violates parity and give an asymmetric contribution to the \sigma distribution.
So obviously the asymmetry give a measure of the Z exchange contribution.
OK, so Q: I don't understand why this reasoning doesn't apply when you consider e^+ e^- \rightarrow e^+ e^-
Surely this behaves the same, since the photon and Z exchange is equally probable?
The cross section \frac{d\sigma}{d(cos \theta )} (e^+e^- \rightarrow \mu^+ \mu^-) \propto 1 + cos^2 \theta for a purely vectorial (electromagnetic) interaction. Hence \sigma is expected to be symetric in cos \theta.
The axial vector (weak) coupling of the Z boson violates parity and give an asymmetric contribution to the \sigma distribution.
So obviously the asymmetry give a measure of the Z exchange contribution.
OK, so Q: I don't understand why this reasoning doesn't apply when you consider e^+ e^- \rightarrow e^+ e^-
Surely this behaves the same, since the photon and Z exchange is equally probable?