QFT: calculating decay rates from invariant matrix element M

FredMadison
Messages
47
Reaction score
0
Hi!

I am currently taking a first course in QFT with Peskin & Schroeder's book. I've got stuck with the equation that relates the differential decay rate of a particle A at rest into a set of final particles with the invariant matrix element M of the process. M can be found from the Feynman rules.
The equation is:

d\Gamma = \frac{1}{2m_A}\left(\prod_f \frac{d^3 p_f}{(2\pi)^3}\frac{1}{2E_f}\right) |M(m_A \rightarrow \{p_f\})|^2 (2\pi)^4 \delta^{(4)}(p_A-\sum p_f)

where

\Gamma is the decay rate
m_A is the rest energy of the initial particle A
p_A is the momentum of the initial particle A
E_f is the energy of one of the final particles
p_f is the momentum of one of the final particles

In my problem, 1 particle decays into 2, so we get 2 factors with one integral each when integrating both sides to find \Gamma. I feel kinda unsure on how to treat the delta function since it is four-dimensional and the integrals over p are three-dimensional. It's clear that the delta function imposes momentum conservation, but how to integrate?

Any help is greatly appreciated.
 
Physics news on Phys.org
I seem to recall you can convert the 3D integral into a 4D integral. It's been way too long since I took QFT to remember the details, and I'm too lazy to go dig out my books. But I found this on the web:

http://www.physics.thetangentbundle.net/wiki/Quantum_field_theory/phase_space_integral
 
Last edited by a moderator:
Thanks a lot! That link was really helpful.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top