I [QFT-Schwartz Page. 256] Violation of operator exponentiation rule ?

Golak Bage
Messages
3
Reaction score
1
TL;DR Summary
Schwartz derives path integral formulation from 'non-relativistic QM'.
When computing the projection of time-evoluted state ## |x_j> ## on ## |x_{j+1}> ## it uses the 'completeness' of momentum basis ## \int \frac{dp}{2\pi} |p><p| ##. Next it explicitly states the form of Hamiltonian ## \hat{H} = \frac{\hat{p}^2}{2m}+\hat{V}(\hat{x_j},t_j) ##. Thereafter i believe it uses the relation $$ e^{\frac{\hat{p}^2}{2m}+\hat{V}(\hat{x_j},t_j)} = e^{\frac{\hat{p}^2}{2m}}\times e^{\hat{V}(\hat{x_j},t_j)}.$$ This pre-supposes that ##[\hat{p},\hat{V}(\hat{x_j},t_j)]=0##. In QM for any two operators (say ##\hat{A}\ \&\ \hat{B} ##) ##e^{\hat{A}+\hat{B}}=e^{\hat{A}}\times e^{\hat{B}}\times e^{-\frac{1}{2}[\hat{A}, \hat{B}]}##, therefore above relation doesn't appear general (it's more specific). I'd like some feedback on my thought.

Screenshot 2024-05-21 233704.png
 
  • Like
Likes dextercioby
Physics news on Phys.org
Golak Bage said:
##\large e^{\hat{A}+\hat{B}}=e^{\hat{A}}\times e^{\hat{B}}\times e^{-\frac{1}{2}[\hat{A}, \hat{B}]}##

Apply this to ##\large e^{-i[\frac{\hat{p}^2}{2m} + V(\hat{x}_j, t_j) ] \delta t }. \,\,\,\,## So, ##\hat{A} = -i\frac{\hat p^2}{2m} \delta t## and ##\hat B =-iV(\hat x_j, t_j)\delta t##.

Note that ##[\hat A, \hat B]## is proportional to ##\delta t ^2. \,\,## If ##\delta t## is assumed to be very small, perhaps we can neglect terms of second order in ##\delta t## and approximate ##e^{-\frac{1}{2}[\hat{A}, \hat{B}]} \approx 1##.
 
  • Like
Likes dextercioby, Demystifier and Golak Bage
TSny said:
Apply this to ##\large e^{-i[\frac{\hat{p}^2}{2m} + V(\hat{x}_j, t_j) ] \delta t }. \,\,\,\,## So, ##\hat{A} = -i\frac{\hat p^2}{2m} \delta t## and ##\hat B =-iV(\hat x_j, t_j)\delta t##.

Note that ##[\hat A, \hat B]## is proportional to ##\delta t ^2. \,\,## If ##\delta t## is assumed to be very small, perhaps we can neglect terms of second order in ##\delta t## and approximate ##e^{-\frac{1}{2}[\hat{A}, \hat{B}]} \approx 1##.
Thank you. It actually makes sense.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top