QM: psi(x,t) for Gaussian Wave Packet

Gumbercules
Messages
11
Reaction score
0

Homework Statement


For a free particle, Given psi(x,0) = Aexp(-ax^2), find psi(x,t)


Homework Equations


phi(k) = 1/(sqrt(2pi)) times integral from -inf to +inf (psi(x,0)exp(-ikx))dx
psi(x,t) = 1/(sqrt(2pi)) times integral from -inf to +inf (phi(k)exp(i(kx - (hk^2)t/2m)))dk
my apologies for the messy notation


The Attempt at a Solution


I have normalized psi(x,0) to get A = (pi/a)^-1/4 and have my psi(k) = (1/(sqrt(2pi))) ((pi/a)^-1/4) times integral from -inf to +inf (exp(-ax^2) exp(-ikx)) dx.

regrettably, my math is quite out of practice, and I am unsure how to proceed. the text says something about 'completing the square' which gives y = (sqrt(a))[x + (b/2a)], then ((ax^2) + bx) = (y^2) - (b^2)/4a. After this, integration by parts doesn't seem to help (or I'm missing something, which is quite likely). Any help is greatly appreciated!
 
Physics news on Phys.org
Why do you need integration by parts? Maybe you've just been staring at QM too long. If A and B are c-numbers, then eAB=eAeB. One of these factors will come out of the integral.
 
Perhaps you are right Turin, I do feel a little braindead at the moment. Do you mean exp(a+b) = exp(a)exp(b)? In that case, I would take the exp((b^2)/4a) out of the integral, which would leave the integral from -inf to + inf (exp(-y^2)), which I can solve. My apologies if I have this wrong, maybe I should come back to it later.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top