[QM] Two-Particle Systems: overlapping/non-overlapping wavefunctions

WeiShan Ng
Messages
36
Reaction score
2

Homework Statement


1.png

Hi, I was reading Griffiths and stumble upon some questions. This is from 5.1.2 Exchange Forces. The section is trying to work out the square of the separation distance between two particles, $$\langle (x_1 - x_2)^2 \rangle = \langle x_1^2 \rangle + \langle x_2^2 \rangle - 2 \langle x_1 x_2 \rangle$$
My confusion came when
$$\int x_1 \psi_a (x_1)^* \psi_b (x_1) dx_1 \, \int x_2 \psi_b(x_2)^* \psi_a(x_2) dx_2 = \langle x \rangle _{ab} \langle x \rangle _{ba}$$ I don't get why there are ##\langle x \rangle _{ab}## and ##\langle x \rangle _{ba}## here , won't the $$\int x_2 \psi_b(x_2)^* \psi_a(x_2) dx_2=\int x_1 \psi_a (x_1)^* \psi_b (x_1) dx_1=0??$$ since both ##\psi_a## and ##\psi_b## are orthogonal to each other?

And in the next paragraph the text says
Notice that ##\langle x \rangle _{ab} ## vanishes unless the two wavefunctions actually overlap [if ##\psi_a(x)## is zero wherever ##\psi_b(x)## is nonzero, the integral in Equation 5.20 is zero] So if ##\psi_a## represents an electron in an atom in Chicago, and ##\psi_b## represents an electron in an atom in Seattle, it's not going to make any difference whether you antisymmetrize the wave function or not. As a practical matter, therefore, it's okay to pretend that electrons with nonoverlapping wave functions are distinguishable.
What is the meaning of "overlap" here? Based on the text given I assume it means both particles are "at the same position", i.e. ##x_1=x_2##. And how does an overlapping and non-overlapping wavefunction look like?

Homework Equations

The Attempt at a Solution

 

Attachments

  • 1.png
    1.png
    23.5 KB · Views: 1,402
Physics news on Phys.org
This picture may answer your question "how does an overlapping and non-overlapping wavefunction look like?"
 

Attachments

  • Capture.PNG
    Capture.PNG
    6.8 KB · Views: 660
  • Like
Likes WeiShan Ng
Nguyen Son said:
This picture may answer your question "how does an overlapping and non-overlapping wavefunction look like?"
Thank you!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...

Similar threads

Back
Top