Qns on euler-lagrangian equation

  • Thread starter Thread starter almo
  • Start date Start date
almo
Messages
8
Reaction score
0
I find it hard to undestand the various notation used for the equation.
Am i wrong to understand the equation as finding the maxima or the minima of an function?
However, the terms like functional and small real parameter confuses me.
I read up on what's a functional and can't really understand, so far my understanding of its, is that its a function where by instead of x, a varible, it consist of vectors like velocity and etc. Thus, am i wrong to say equation of KE is actually a functional?
On the part of small real parameter ε.. i just have no idea. All i can infer is that is a change in the vector. But where is there this need to implictly express such a term?
Is euler-lagrangian eq considered as tough for an undergrad?
i am seriously struggling with it...
 
Mathematics news on Phys.org
Do you know what a vector space is? A functional is a map whose domain is a subset of a vector space and which takes scalar values.

In the context of your question a typical vector space would be the set of differentiable functions on the interval [0,1].
V =\{ y(x)| y\, \text{is differentiable in a neighborhood of the interval}\, [0,1]\}

An example of a functional would be a map \mathcal{F}(y) with domain
\{y\in V| y(0)=1,\, y(1)=5\} and which is defined by a formula such as
\mathcal{F}(y) = \int_a^b \sqrt{1+(y')^2}\, dx

In plainer language, in the context of calculus of variations, functionals take ordinary functions as inputs and return numbers as outputs.

A good basic reference would be Gelfand "Calculus of Variations".
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top