Quantum computations, irreversibility, unitarity

kdv
Messages
345
Reaction score
5
A stupid couple of questions...

In quantum computations, one typically starts with some initial quantum state on which an operator is applied.

This operator must be unitary , right? (I guess that otherwise, it would not corerspond to an actual physical quantum setup). And this implies that the operator must be reversible, correct?
So in quantum computing, we consider only irreversible processes, correct?


Now consider Deutsch's algorithm. It deals with a function acting on a single qubit which may be either "balanced" or "constant".

It is balanced if it may give both 0 and 1 a sresult. One possibility is f(0)=0, f(1)=1 and the other balanced possibility is f(0)=1, f(1)=0.

It is constant if it gives the samr answer no matter what the input is. So the first possibility is f(0) =f(1) =0 and the second possibility is f(0)=f(1)=1.

Now, the whole idea of Deutsch's algorithm is to able to distinguish whether f is balanced or constant with a single application of a certain operation which must be chosen judiciously. (and the input state must be chosen judiciously as well).

Now, usually people say: classically, one cannot determine if the function is constant or balanced without two runs fo teh function. (for example, observing that f(0) gives zero does not tell us if it's balanced or not). Then people say that quantum mechanically, one can tell if f is balanced or not with a single run of an operator applied to a suitable combination of two qubits.

Fine. But my question is this: if I understand correctly, the function f(x) itself cannot be represented by any quantum operator , correct? Because in the constant case it is not reversible and therefore could not be associated to a unitary operator.

This kind of surprised me when I thought about this today...It's weird in some sense because the starting point is the operator "f" and yet I have never seen anyone mentioning that f itself cannot be implemented as a quantum operation. Maybe I am missing something?
 
Physics news on Phys.org
He probably means something like the following operation on two qubits:

|x>|y> ---> |x>|y + f(x)>
 
Hurkyl said:
He probably means something like the following operation on two qubits:

|x>|y> ---> |x>|y + f(x)>

Yes, I know this is the operation used in Deutsch's algorithm. I was wondering if I was correct in saying that the operation on a single qubit |x> ---> |f(x)> would be impossible to implement.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top