How to Apply the Hamiltonian to a Wavefunction in Quantum Electromagnetism?

frogjg2003
Messages
263
Reaction score
0

Homework Statement



Consider a charged particle of charge e traveling in the electromagnetic
potentials
<br /> \mathbf{A}(\mathbf{r},t) = -\mathbf{\nabla}\lambda(\mathbf{r},t)\\<br /> \phi(\mathbf{r},t) = \frac{1}{c} \frac{\partial \lambda(\mathbf{r},t)}{\partial t}<br />
where \lambda(\mathbf{r},t) is an arbitrary scalar function.

Show that the wavefunction is
<br /> \psi(\mathbf{r},t) = exp\left(-\frac{\mathit{i}e}{\hbar c} \lambda(\mathbf{r},t)\right) \psi^{(0)}(\mathbf{r},t)<br />
where \phi^{(0)}(\mathbf{r},t) is the solution to the Schrodinger equation for the case \lambda(\mathbf{r},t)=0.
of ¸(r, t) = 0.

Homework Equations



\hat{H} = \frac{(\mathbf{p}-\frac{q}{c}\mathbf{A}(\mathbf{r},t))^2}{2m} + q\phi(\mathbf{r},t)

The Attempt at a Solution



The Hamiltonian is
<br /> \hat{H} = \frac{(\mathit{i}\hbar\mathbf{\nabla} + \frac{e}{c}\mathbf{\nabla}\lambda(\mathbf{r},t))^2}{2m} + \frac{e}{c} \frac{\partial\lambda(\mathbf{r},t)}{\partial t}<br />
and the \lambda=0 wavefunction is
<br /> \psi^{(0)} = exp(\mathit{i} \left(\mathbf{k}\cdot\mathbf{r} - \frac{\hbar k^2 t}{2m}\right)<br />

I'm stuck at applying the Hamiltonian to the function. For the \nabla^2\lambda\psi term, do we apply the Laplacian to just \lambda or to \lambda\psi? Similarly for the cross term and the time derivative.

Is it
<br /> \hat{H}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{\mathit{i}e\hbar}{2mc} \left(\nabla\cdot(\psi\nabla\lambda) + (\nabla\lambda)\cdot(\nabla\psi)\right) + \frac{e}{2mc}\psi\nabla^2\lambda + \frac{e}{c} \psi\frac{\partial\lambda}{\partial t}<br />
or
<br /> \hat{H}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{\mathit{i}e\hbar}{2mc} \left(\nabla^2(\psi\lambda) + (\nabla\lambda\cdot\nabla)\psi\right) + \frac{e}{2mc}\nabla^2(\lambda\psi) + \frac{e}{c} \frac{\partial(\lambda\psi)}{\partial t}<br />
 
Last edited:
Physics news on Phys.org
frogjg2003 said:
The Hamiltonian is
<br /> \hat{H} = \frac{(\mathit{i}\hbar\mathbf{\nabla} + \frac{e}{c}\mathbf{\nabla}\lambda(\mathbf{r},t))^2}{2m} + \frac{e}{c} \frac{\partial\lambda(\mathbf{r},t)}{\partial t}<br />
and the \lambda=0 wavefunction is
<br /> \psi^{(0)} = exp(\mathit{i} \left(\mathbf{k}\cdot\mathbf{r} - \frac{\hbar k^2 t}{2m}\right)<br />
Note typo: In the first term of the Hamiltonian, there should be a negative sign before the ##\mathit{i}\hbar##
I'm stuck at applying the Hamiltonian to the function. For the \nabla^2\lambda\psi term, do we apply the Laplacian to just \lambda or to \lambda\psi? Similarly for the cross term and the time derivative.

Is it
<br /> \hat{H}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{\mathit{i}e\hbar}{2mc} \left(\nabla\cdot(\psi\nabla\lambda) + (\nabla\lambda)\cdot(\nabla\psi)\right) + \frac{e}{2mc}\psi\nabla^2\lambda + \frac{e}{c} \psi\frac{\partial\lambda}{\partial t}<br />
or
<br /> \hat{H}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{\mathit{i}e\hbar}{2mc} \left(\nabla^2(\psi\lambda) + (\nabla\lambda\cdot\nabla)\psi\right) + \frac{e}{2mc}\nabla^2(\lambda\psi) + \frac{e}{c} \frac{\partial(\lambda\psi)}{\partial t}<br />

It's the first form that's correct (with a negative sign for the second term). However, it's much easier to apply the hamiltonian in the form
<br /> \hat{H} = \frac{(\mathit{-i}\hbar\mathbf{\nabla} + \frac{e}{c}\mathbf{\nabla}\lambda(\mathbf{r},t))({-i}\hbar\mathbf{\nabla} + \frac{e}{c}\mathbf{\nabla}\lambda(\mathbf{r},t))}{2m} + \frac{e}{c} \frac{\partial\lambda(\mathbf{r},t)}{\partial t}<br />

where you first apply the right hand factor ##(\mathit{-i}\hbar\mathbf{\nabla} + \frac{e}{c}\mathbf{\nabla}\lambda(\mathbf{r},t))## to the wave function and simplify before applying the second factor of ##(\mathit{-i}\hbar\mathbf{\nabla} + \frac{e}{c}\mathbf{\nabla}\lambda(\mathbf{r},t))##.
 
Thanks.
I was doing a bit too much work. I didn't need to know the form of \psi^{(0)}, just that it solved the free particle Schrodinger equation. From there, I just applied the Hamiltonian and started simplifying. I got the original free particle Shodinger equation right back.
 
Good deal.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top