Quantum Field Theory, Momentum Space Commutation Relations

Arcturus7
Messages
16
Reaction score
0

Homework Statement



Derive, using the canonical commutation relation of the position space representation of the fields φ(x) and π(y), the corresponding commutation relation in momentum space.

Homework Equations



[φ(x), π(y)] = iδ3(x-y)

My Fourier transforms are defined by: $$ φ^*(\vec p)=\int φ(\vec x)e^{-i\vec p⋅\vec x}d^3\vec x $$

The Attempt at a Solution



I have essentially taken the approach of Fourier transforming my canonical position space commutation relation, but after evaluating: $$[φ^*(\vec p), π^*(\vec q)] =i\int δ^3(\vec x-\vec y)e^{-i(\vec p⋅\vec x+\vec q⋅\vec y)}d^3\vec x d^3\vec y $$ I am left with an integral that I don't know how to solve, namely: $$ i\int e^{-i(\vec p+\vec q)⋅x}d^3\vec x $$

1) Am I right up till here?

and:

2) Any hints on how to solve this integral? I tried using polar coordinates but didn't get very far. I figured there was probably a symmetry I was missing, but I can't for the life of me see what it would be. I know that the answer should be simply $$[φ^*(\vec p), π^*(\vec q)]= i(2π)^3δ^3(\vec p+\vec q) $$
 
Physics news on Phys.org
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top