Quantum Mechanics: Degenerate Perturbation Theory on square well

Evil Harry
Messages
2
Reaction score
0

Homework Statement


Hi I am trying to apply degenerate perturbation theory to a three dimensional square well v= 0 for x, y,z interval 0 to a, perturbed by H' = xyz (product) from 0 to a, otherwise infinite. I need to find the correction to energy of the first excited state which I know is triply degenerate. I am using Griffith's textbook.


Homework Equations





The Attempt at a Solution



The problem I am having is in constructing the matrix. the one that looks like
Waa Wab
Wba Wbb

Or H11 H12
H21 H22
as some other textbooks calls it. I know for this problem I need to use a three dimensional matrix the above is just to clarify. Specifically my problem arises when i need to solve the values of the non diagonal elements. say Wab because this leads to an integral that I can't seem to solve the integral of say:
integrate x sin(Ax) sin(Bx) between 0 and a, where A and B are different because the wave functions are different say that n=1 for the argument in A and n=2 for the argument in B. so that the wave functions are \psi 112 and \psi211. Now I am trying to avoid solving the integral having been unsucsesful in numerous attempts and instead use another approach of finding an operator that commutes with H' and H (the unpeturbed system). So my new problem is an operator that I can use. I have never before used this method and there isn't really a worked example in the book. So any help with this integral (see bottom) or in using this method will be much appreciated. How do I know which operator to use and since they have simultaneous eigenfunctions wouldn't the diagonal elements be the same as using non degenerate perturbation theory <ψ | H'|ψ > or am I now using different eigenfunctions than those of the square well?
E=∫_0^a▒〖xsin(xπ/a) sin⁡(2πx/a)dx〗
 
Physics news on Phys.org
Your integral is of the form x sin(ax) sin(bx). There are many ways to do this. You could first use sin(ax)sin(bx) = (1/2)cos((a-b)x) - (1/2)cos((a+b)x), then you have to integrate x cos(cx), which can be done by integration by parts.
 
Thanx for the help, I forgot about that identity, haven't used it in a while.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top