TheBaker
- 18
- 0
Homework Statement
A particle is trapped in an infinite potential well, with the infinite walls at ±a. At time t=0, the wavefunction of the particle is
\psi = \frac{1}{\sqrt{2a}}
between -a and a, and 0 otherwise.
Find the probability that the Energy of the particle is \frac{9 \bar{h}^2 \pi^2}{8ma^2}
Homework Equations
E_n = \frac{n^2\bar{h}^2\pi^2}{8ma}
\psi = A \cos{\frac{(2r+1) \pi x}{2a}} for |x| < a
\psi = 0 otherwise
The Attempt at a Solution
I've calculated the above equations, but I'm unsure how to get from them to the probability of the particle having a certain energy. This could be really simple and it's me just having a brain dead moment, but any help would be very much appreciated.