Quantum Mechanics - Lowering Operator

izzmach
Messages
7
Reaction score
0

Homework Statement


let A be a lowering operator.

Homework Equations


Show that A is a derivative respects to raising operator, A†,

A=d/dA†

The Attempt at a Solution


I start by defining a function in term of A†, which is f(A†) and solve it using [A , f(A†)] but i get stuck after that. Can someone please explain briefly what i should do in the next step?
 
Physics news on Phys.org
##A_+|n> = |n-1> \, , \, A_-|n+1> = |n> ## so
$$ A_+\,A_-\, |n> = |n> \,\Rightarrow\,\left(A_+A_- + [A_+,A_-]\right)|n> = |n> $$
 
theodoros.mihos said:
##A_+|n> = |n-1> \, , \, A_-|n+1> = |n> ## so
$$ A_+\,A_-\, |n> = |n> \,\Rightarrow\,\left(A_+A_- + [A_+,A_-]\right)|n> = |n> $$

sorry, i don't quite understand. Mind to explain it?
 
## |n> = \Psi_n ## my English is very poor for this theme. ## \frac{d}{dA_+}\left(A_+A_-+1\right) ## is that you need.
 
izzmach said:
I start by defining a function in term of A†, which is f(A†) and solve it using [A , f(A†)] but i get stuck after that. Can someone please explain briefly what i should do in the next step?
You didn't write out the commutation relations in your initial post. I.e., ##~[A, A^\dagger] = \dots ~?##

Start by working out ##[A, (A^\dagger)^2]##, and ##[A, (A^\dagger)^3]## using the Leibniz product rule for commutators. This should help you see the pattern. Then try to prove ##[A, (A^\dagger)^k] = k (A^\dagger)^{k-1}## by induction on ##k##.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top