Tom_12
- 6
- 0
Homework Statement
consider operator defined as \hat{O_A} = \hat{A} -<\hat{A}>
show that (ΔA)^2=<\hat{O_A}^2>
Homework Equations
(ΔA)^2=<\hat{A}^2>-<\hat{A}>^2
The Attempt at a Solution
(ΔA)^2=<\hat{A}^2>-<\hat{A}>^2
= <\hat{A}^2> - (\hat{A} -\hat{O_A})^2
= <\hat{A}^2> - \hat{A}^2 + 2\hat{A}<\hat{O_A}> - \hat{O_A}^2
or
\hat{O_A} = \hat{A} -<\hat{A}>
\hat{O_A}^2 = (\hat{A} -<\hat{A}>)^2
\hat{O_A}^2 = \hat{A}^2-2\hat{A}<\hat{A}>+\hat{A}^2
But I don't know how to convert the operator \hat{O_A} into the expectation value <\hat{O_A}>...?