Quantum Mechanics - Superposition of Wavefunctions?

pearapple
Messages
10
Reaction score
0

Homework Statement


The wavefunction for a particle in one dimension is given by
ψ1. Another state the particle may be in is ψ2. A third state the particle could be in is ψ3.

Looking at the wavefunctions, ψ3 is ψ1 and ψ2 added together.

Is the probability of being in a given interval in ψ3 the same as the separate probabilities for ψ1 and ψ2 for that interval?

Homework Equations





The Attempt at a Solution


I don't really understand how superposition works. I read something about the ψ's being linear, so a linear combination of ψ1 and ψ2 (ie. ψ3) is still a solution to the Schrodinger equation.

Is the superposition state a completely different state still though? I don't get why I am being asked this question. If it's a mixture of the two states, the probabilities would change wouldn't they? I don't see the link here.
 
Physics news on Phys.org
Suppose the particle is in the state ψ1 and say the probability of finding it in the interval a ≤ x ≤ b is p1. Similarly, suppose the particle is in the state ψ2 and the corresponding probability is p2, and likewise for state ψ3.

The question is asking you, I believe, if it's true that p3 = p1 + p2.
 
Thanks! I believe you're right.

In general, I don't think p3 = p1 + P2.

I don't think I could explain why though. I just don't see WHY those would be equal, because although state 3 is a superposition, it is still a new state is it not? Is there some situation in which p3 = p1 + P2 is true?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top