A Quantum versus classical computation of the density of state

Jip
Messages
20
Reaction score
2
Hi,
If I consider for instance N non interacting particles in a box, I can compute the energy spectrum quantum mechanically, and thus the number of (quantum) microstates corresponding to a total energy between $E_0$ and $E_0 + \delta E$. In the limit of large quantum numbers, the result is well known to coincide with the available volume of the phase space of the corresponding classical system of N Newtonian free particles in a box, namely
$$
\Omega(E_0,V,N; \delta E)_{\textbf{quantum}} \to \frac{1}{h^N} \int_{E_0<E<E_0 +\delta E} d^{3N}x d^{3N}p
$$
in the limit of large quantum numbers.

My question is the following. Is there any proof, besides this specific example of the quantum gas in a box, that the quantum expression is always going to approach the classical one in phase space, for any given physical system (and thus for some generalized coordinates), provided some classical limit is used?

This does not seem a trivial statement to me, and I can't find the proof in textbooks.

Many thanks.
 
Physics news on Phys.org
You've probably already read it, but the Wikipedia page on the Correspondence Principle might be a good source of sources for this question.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top