Question about circular motion and acceleration

AI Thread Summary
In circular motion, the relationship between velocity and angular velocity is expressed as V = rw, with the velocity direction along the tangent. The acceleration can be broken down into tangential and radial components, where rα represents only the tangential acceleration, not the total acceleration. The total acceleration is derived from the vector sum of both components, indicating that rα alone does not capture the complete picture. Only the component of acceleration parallel to the velocity affects speed, while orthogonal acceleration changes direction without altering speed. This distinction clarifies why the magnitude of acceleration differs from that of velocity in circular motion.
parshyaa
Messages
307
Reaction score
19
In circular motion
1) V = rw and ##\vec V## = r ω##\vec e_{tan}##
2) a = rα and ##\vec a## = -##\frac{v^2}{r}####\vec e_{rad}## + rα##\vec e_{tan}##
Where ##\vec e_{tan}## is the unit vector along the tangent in increasing direction of θ
And ##\vec e_{rad}## is the unit vector along the radial outward.
From 1) we see that rω is the magnitude of velocity of particle executing circular motion and its direction is along tangent
But in 2) we see that magnitude of acceleration is rα but this is not the magnitude of total acceleration
How could you explain that rα is not the magnitude of total α
 
Physics news on Phys.org
parshyaa said:
But in 2) we see that magnitude of acceleration is rα
This is not correct. It only describes the tangential acceleration.
 
Orodruin said:
This is not correct. It only describes the tangemtial acceleration.
I know that, this is not the magnitude of acceleration, it will be root of the sum of the square of components in both tangential and radical direction, but in v=rω its the total magnitude of the velocity and in a= rα its not the magnitude of total acceleration, its just the magnitude along the tangent, this is what not satisfying me, in the previous case total magnitude is same as v= rw, but this is not the case with accelaration, why is this so
 
Take a general velocity ##\vec v##. Its magnitude, i.e., the speed, ##v## satisfies ##v^2 = \vec v^2## which means that the time derivative ##\dot v## of the speed is given by the time derivative of this expression as
$$
\frac{dv^2}{dt} = 2v\dot v = \frac{d\vec v^2}{dt} = 2\vec v \cdot \frac{d\vec v}{dt} = 2\vec v \cdot \vec a.
\quad
\Longrightarrow
\quad
\dot v = \frac{\vec v \cdot \vec a}{v^2}.
$$
Hence, only the acceleration in the direction parallel to ##\vec v## matters for the change in the speed. Any acceleration orthogonal to the velocity will only change the direction, but not the speed.
 
  • Like
Likes parshyaa
Orodruin said:
Take a general velocity ##\vec v##. Its magnitude, i.e., the speed, ##v## satisfies ##v^2 = \vec v^2## which means that the time derivative ##\dot v## of the speed is given by the time derivative of this expression as
$$
\frac{dv^2}{dt} = 2v\dot v = \frac{d\vec v^2}{dt} = 2\vec v \cdot \frac{d\vec v}{dt} = 2\vec v \cdot \vec a.
\quad
\Longrightarrow
\quad
\dot v = \frac{\vec v \cdot \vec a}{v^2}.
$$
Hence, only the acceleration in the direction parallel to ##\vec v## matters for the change in the speed. Any acceleration orthogonal to the velocity will only change the direction, but not the speed.
Wonderfull explanation, just replace v^2 by v
Thank you so much, for this explanation
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top