Question about circular motion and acceleration

Click For Summary
SUMMARY

This discussion focuses on the concepts of circular motion and acceleration, specifically addressing the distinction between tangential and radial acceleration. The equations V = rw and a = rα are clarified, emphasizing that rα represents only tangential acceleration, not total acceleration. The total acceleration is derived from the vector sum of both tangential and radial components. The conversation concludes with an affirmation of the importance of understanding how acceleration affects speed in circular motion.

PREREQUISITES
  • Understanding of circular motion principles
  • Familiarity with angular velocity (ω) and angular acceleration (α)
  • Knowledge of vector calculus, particularly in relation to acceleration
  • Basic grasp of kinematic equations in physics
NEXT STEPS
  • Study the relationship between tangential and radial acceleration in circular motion
  • Learn about vector decomposition in physics
  • Explore the implications of centripetal acceleration on circular motion
  • Investigate the role of angular momentum in circular dynamics
USEFUL FOR

Students of physics, educators teaching mechanics, and anyone interested in the mathematical foundations of motion in circular paths.

parshyaa
Messages
307
Reaction score
19
In circular motion
1) V = rw and ##\vec V## = r ω##\vec e_{tan}##
2) a = rα and ##\vec a## = -##\frac{v^2}{r}####\vec e_{rad}## + rα##\vec e_{tan}##
Where ##\vec e_{tan}## is the unit vector along the tangent in increasing direction of θ
And ##\vec e_{rad}## is the unit vector along the radial outward.
From 1) we see that rω is the magnitude of velocity of particle executing circular motion and its direction is along tangent
But in 2) we see that magnitude of acceleration is rα but this is not the magnitude of total acceleration
How could you explain that rα is not the magnitude of total α
 
Physics news on Phys.org
parshyaa said:
But in 2) we see that magnitude of acceleration is rα
This is not correct. It only describes the tangential acceleration.
 
Orodruin said:
This is not correct. It only describes the tangemtial acceleration.
I know that, this is not the magnitude of acceleration, it will be root of the sum of the square of components in both tangential and radical direction, but in v=rω its the total magnitude of the velocity and in a= rα its not the magnitude of total acceleration, its just the magnitude along the tangent, this is what not satisfying me, in the previous case total magnitude is same as v= rw, but this is not the case with accelaration, why is this so
 
Take a general velocity ##\vec v##. Its magnitude, i.e., the speed, ##v## satisfies ##v^2 = \vec v^2## which means that the time derivative ##\dot v## of the speed is given by the time derivative of this expression as
$$
\frac{dv^2}{dt} = 2v\dot v = \frac{d\vec v^2}{dt} = 2\vec v \cdot \frac{d\vec v}{dt} = 2\vec v \cdot \vec a.
\quad
\Longrightarrow
\quad
\dot v = \frac{\vec v \cdot \vec a}{v^2}.
$$
Hence, only the acceleration in the direction parallel to ##\vec v## matters for the change in the speed. Any acceleration orthogonal to the velocity will only change the direction, but not the speed.
 
  • Like
Likes   Reactions: parshyaa
Orodruin said:
Take a general velocity ##\vec v##. Its magnitude, i.e., the speed, ##v## satisfies ##v^2 = \vec v^2## which means that the time derivative ##\dot v## of the speed is given by the time derivative of this expression as
$$
\frac{dv^2}{dt} = 2v\dot v = \frac{d\vec v^2}{dt} = 2\vec v \cdot \frac{d\vec v}{dt} = 2\vec v \cdot \vec a.
\quad
\Longrightarrow
\quad
\dot v = \frac{\vec v \cdot \vec a}{v^2}.
$$
Hence, only the acceleration in the direction parallel to ##\vec v## matters for the change in the speed. Any acceleration orthogonal to the velocity will only change the direction, but not the speed.
Wonderfull explanation, just replace v^2 by v
Thank you so much, for this explanation
 

Similar threads

  • · Replies 37 ·
2
Replies
37
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 54 ·
2
Replies
54
Views
8K
Replies
12
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
15K
  • · Replies 4 ·
Replies
4
Views
16K
  • · Replies 15 ·
Replies
15
Views
4K