Question about operator and eigenvectors

einai
Messages
27
Reaction score
0
Hi, I encountered the following HW problem which really confuses me. Could anyone please explain it to me? Thank you so much!

The result of applying a Hermitian operator B to a normalized vector |1> is generally of the form:

B|1> = b|1> + c|2>

where b and c are numerical coefficients and |2> is a normalized vector orthogonal to |1>.

My question is: Why B|1> must have the above form? Does it mean if |1> is an eigenstate of B, then b=!0 and c=0? But what if |1> is not an eigenstate of B?

I also need to find the expectation value of B (<1|B|1>), but I think I got this part:

<1|B|1> = <1|b|1> + <1|c|2> = b<1|1> + c<1|2> = b

since |1> and |2> are orthogonal and they're both normalized. Does that look right?
 
Last edited:
Physics news on Phys.org


Originally posted by Ambitwistor
You can decompose any vector, such as B|1>, into two components that are proportional to and orthogonal to some vector. If |1> is an eigenvector of B, then B|1> = b|1>; b can be zero or nonzero. If |1> isn't an eigenstate of B, then neither b nor c have to be zero. You correctly computed <1|B|1>.

Thank you very much. I got it :).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top