Char. Limit
Gold Member
- 1,222
- 23
All right, so I was wondering... I took a look at generating orthogonal functions (over an interval), and say I have these four:
\frac{1}{\sqrt{3}}
\frac{5}{3} - \frac{2}{3} x
\frac{11}{3} \sqrt{\frac{5}{3}} - \frac{10}{3} \sqrt{\frac{5}{3}} x + \frac{2}{3} \sqrt{\frac{5}{3}} x^2
\frac{245}{27} \sqrt{\frac{7}{3}} - \frac{116}{9} \sqrt{\frac{7}{3}} x + \frac{50}{9} \sqrt{\frac{7}{3}} x^2 - \frac{20}{27} \sqrt{\frac{7}{3}} x^3
These four polynomials are all orthonormal and orthogonal over the interval [1,4]. Now what I want to know is, is it possible to prove that these are the ONLY polynomials of degree 3 or fewer that satisfy orthonormality and orthogonality?
\frac{1}{\sqrt{3}}
\frac{5}{3} - \frac{2}{3} x
\frac{11}{3} \sqrt{\frac{5}{3}} - \frac{10}{3} \sqrt{\frac{5}{3}} x + \frac{2}{3} \sqrt{\frac{5}{3}} x^2
\frac{245}{27} \sqrt{\frac{7}{3}} - \frac{116}{9} \sqrt{\frac{7}{3}} x + \frac{50}{9} \sqrt{\frac{7}{3}} x^2 - \frac{20}{27} \sqrt{\frac{7}{3}} x^3
These four polynomials are all orthonormal and orthogonal over the interval [1,4]. Now what I want to know is, is it possible to prove that these are the ONLY polynomials of degree 3 or fewer that satisfy orthonormality and orthogonality?