I'm going to use matrices to show this because it will be quicker. Given this metric
## \left[ \begin{array}{cccc}
g00 & g01 & 0 & 0\\\
g01 & g11 & 0 & 0\\\
0 & 0 & g22 & 0\\\
0 & 0 & 0 & g33\end{array}
\right]
##
and making a guess at the cobasis vectors,
##\mathbf{e_0}=\left[ \begin{array}{cccc} a & b & 0 & 0\end{array} \right],\ \mathbf{e_1}=\left[ \begin{array}{cccc} c & d & 0 & 0\end{array} \right],\ \mathbf{e_2}=\left[ \begin{array}{cccc} 0 & 0 & \sqrt{g22} & 0\end{array} \right],\ \mathbf{e_3}=\left[ \begin{array}{cccc} 0 & 0 & 0 & \sqrt{g33}\end{array} \right]
##
where a,b,c,d are unknown. Now we calculate the tensor product of the covector ( see my previous) and get
## \left[ \begin{array}{cccc}
{c}^{2}-{a}^{2} & c\,d-a\,b & 0 & 0\\\
c\,d-a\,b & d^2-b^2 & 0 & 0\\\
0 & 0 & g22 & 0\\\
0 & 0 & 0 & g33\end{array}
\right]
##
Now we can start eliminating a,b,c and d. For instance, we have the equation
##c\,d-a\,b=g01## or ##c=\frac{g01+a\,b}{d}##. Now substitute this value into the cobasis vectors and recalculate the tensor product and repeat.
To give some physical meaning to this choose ##{\mathbf{e}}_0## to be the 4-velocity covector of some worldline. For a static observer b will be zero.
This is a basic, brute-force method ( I have software to do this ) and maybe someone will come up with something elegant.
Over to you, have fun
[edit]
I get ##b=0##, ##a=\sqrt{\frac{{g01}^{2}}{g11}-g00}##, ##c=\frac{g01}{\sqrt{g11}}## and ##d=\sqrt{g11}##