Question answer I don't understand

  • Thread starter Thread starter Genericcoder
  • Start date Start date
Genericcoder
Messages
130
Reaction score
0
An electronic fuse is produced by five production lines in a manufacturing operation.
The fuses are costly, are quite reliable, and are shipped to suppliers in 100-unit lots.
Because testing is destructive, most buyers of the fuses test only a small number of
fuses before deciding to accept or reject lots of incoming fuses.
All five production lines produce fuses at the same rate and normally produce
only 2% defective fuses, which are dispersed randomly in the output. Unfortunately,
production line 1 suffered mechanical difficulty and produced 5% defectives during
the month of March. This situation became known to the manufacturer after the fuses
had been shipped.Acustomer received a lot produced in March and tested three fuses.
One failed. What is the probability that the lot was produced on line 1? What is the
probability that the lot came from one of the four other lines?

Let B denote the event that a fuse was drawn from line 1 and let A denote the event
that a fuse was defective. Then it follows directly that

P(B) = 0.2 and P(A|B) = 3(.05)(.95)^2 = .135375.

Similarly,
P(B-) = 0.8 and P(A|B-) = 3(.02)(.98)2 = .057624.



P(A) = P(A|B)P(B) + P(A|B-)P(B-)
= (.135375)(.2) + (.057624)(.8) = .0731742.


P(B|A) = P(B & A) / P(A) = P(A|B)*P(B) / P(A) = (.135375)(.2) / .0731742 = 0.37

Wat I don't understand here how did he get those values for
P(A|B) and P(B-)..? shouldn't P(B | A) = P(A & B) / P(B) = 0.05/0.2

P(B) = 1/5 = 0.2. same logic for P(A|B-) I don't understand this if someone could explain this more clearly.
 
Physics news on Phys.org
Genericcoder said:
shouldn't P(B | A) = P(A & B) / P(B) = 0.05/0.2

It should be P(A) in the denominator, not P(B) like you have written. You may be confused because the formula will typically be presented as giving P(A | B), so your A and B are flipped from what the standard formula in a textbook would read.
 
oh i see
 
Another way of looking at it: Imagine that every line produces 1000 items, for a total of 5000 items. Lines 2 through 4 have 2% bad: a total of .02(4000)= 80 bad items. Line one produces 5% bad, a total of 50 bad items. That is, out of a total of 80+ 50= 130 bad items, 50, or 50/130 or about 38% came from line 1.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top