Question commutation in quantum mechanics

Another
Messages
104
Reaction score
5

Homework Statement



Show that ##[L_{x}^2,L_{y}^2]=[L_{y}^2,L_{z}^2]=[L_{z}^2,L_{x}^2]##

Homework Equations


##L^2 = L_{x}^2+L_{y}^2+L_{z}^2##
##L_x = yp_z-zp_y##
##L_y = zp_x-xp_z##
##L_z = xp_y-yp_x##
##[x_i,p_j]=iħδ_{ij}##
##[L_x,L_y]=iħL_z##
##[L_y,L_z]=iħL_x##
##[L_z,L_x]=iħL_y##
##[A,B]=AB-BA##

The Attempt at a Solution



##[L_{x}^2,L_{y}^2]= [L_{x}L_{x},L_{y}L_{y}]##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{y}L_{x}L_{x}##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{y}L_{x}L_{x}±L_{y}L_{x}L_{y}L_{x}##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{x}L_{y}L_{x}+L_{y}L_{x}L_{y}L_{x}-L_{y}L_{y}L_{x}L_{x}##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{x}L_{y}L_{x}+L_{y}(L_{x}L_{y}-L_{y}L_{x})L_{x}##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{x}L_{y}L_{x}+L_{y}[L_{x},L_{y}]L_{x}##
##[L_{x}^2,L_{y}^2]= L_{x}L_{x}L_{y}L_{y}-L_{y}L_{x}L_{y}L_{x}+iħL_{y}L_{z}L_{x}##

##[L_{y}^2,L_{z}^2]= [L_{y}L_{y},L_{z}L_{z}]##
##[L_{y}^2,L_{z}^2]= L_{y}L_{y}L_{z}L_{z}-L_{z}L_{z}L_{y}L_{y}##
##[L_{y}^2,L_{z}^2]= L_{y}L_{y}L_{z}L_{z}±L_{z}L_{y}L_{z}L_{y}-L_{z}L_{z}L_{y}L_{y}##
##[L_{y}^2,L_{z}^2]= L_{y}L_{y}L_{z}L_{z}-L_{z}L_{y}L_{z}L_{y}+L_{z}L_{y}L_{z}L_{y}-L_{z}L_{z}L_{y}L_{y}##
##[L_{y}^2,L_{z}^2]= L_{y}L_{y}L_{z}L_{z}-L_{z}L_{y}L_{z}L_{y}+iħL_{z}L_{x}L_{y}##

##[L_{z}^2,L_{x}^2]= [L_{z}L_{z},L_{x}L_{x}]##
##[L_{z}^2,L_{x}^2]= L_{z}L_{z}L_{x}L_{x}-L_{x}L_{x}L_{z}L_{z}##
##[L_{z}^2,L_{x}^2]= L_{z}L_{z}L_{x}L_{x}±L_{x}L_{z}L_{x}L_{z}-L_{x}L_{x}L_{z}L_{z}##
##[L_{z}^2,L_{x}^2]= L_{z}L_{z}L_{x}L_{x}-L_{x}L_{z}L_{x}L_{z}+L_{x}L_{z}L_{x}L_{z}-L_{x}L_{x}L_{z}L_{z}##
##[L_{z}^2,L_{x}^2]= L_{z}L_{z}L_{x}L_{x}-L_{x}L_{z}L_{x}L_{z}+iħL_{x}L_{y}L_{z}##

It not equal. My answer is incorrect.
 
Physics news on Phys.org
I suggest to use the commutator identities:
[AB,C] = A[B,C] + [A,C]B
[A,BC]=B[A,C] + [A,B]C
(one possible source: http://www.cchem.berkeley.edu/chem120a/extra/commutator.pdf)

Thus, [Lx2,Ly2] = [LxLx, Ly2] = Lx[Lx,Ly2]+[Lx,Ly2]Lx
Then you compute the [Lx,Ly2], which decomposes as a sum of products of Ly and [Lx,Ly].
Notice that the latter do not commute, as [Lx,Ly] ~ Lx, but the whole thing unravels.

I didn't try to go to the end with this, but I believe it should work.

Regards,
Joseph Shtok
 
  • Like
Likes Another and Cryo
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top