Question Concerning The Coefficient of Friction: Block on a Rough Inclined Plane

AI Thread Summary
A block of mass 20kg is on a rough inclined plane at 60 degrees, and a force P is applied to maintain equilibrium. Two methods of analysis are discussed: one assumes P acts up the slope to prevent sliding down, while the other allows P to act either up or down the slope. Calculations reveal that the coefficient of friction (μ) can be derived as either 0.577 or an implausible 5.20, leading to confusion about the correct interpretation. The consensus leans toward the first method being the intended approach, as μ values above 1.5 are generally unrealistic. The discussion highlights the importance of accurately interpreting the problem's wording and the implications of the force's direction.
UnknownGuy
Messages
7
Reaction score
0

Homework Statement


A block of mass 20kg is on rest on a rough plane inclined at 60 degrees to the horizontal. A force P is applied to the block to "maintain equilibrium". P is parallel to the line of greatest slope of the inclined plane. The maximum value of P is twice the minimum value of P. Find the coefficient of friction between the block and the plane.

Homework Equations


Frictional force=Coefficient of friction*Normal Foce (F=μR)

The Attempt at a Solution


This question can be interpreted in two different ways:
First way: Without P, the block will slide down so P MUST act up the line of greatest slope of the plane.
Second way: P can either act up or down the line of greatest slope of the plane, and the resultant of P, component of the weight down the slope and the frictional force is 0N.
Attached are pictures illustrating the two methods. Can you please tell me which method do you think is correct? In my exam, I was leaning towards the second way but μ=5.20 seemed rather large. Moreover, the wording, "To maintain equilibrium" made it seem like the block would be sliding down without P hence it has to act up the line of greatest slope.
Thanks in advance.

Edit: It seems like the quality of the pictures has been decreased. The subscripts under P are (min) and (max)
 

Attachments

  • FirstWay.jpg
    FirstWay.jpg
    20.8 KB · Views: 544
  • SecondWay.jpg
    SecondWay.jpg
    20.8 KB · Views: 487
Physics news on Phys.org
UnknownGuy said:
the wording, "To maintain equilibrium" made it seem like the block would be sliding down without P hence it has to act up the line of greatest slope.
I feel sure that is the intent.
 
UnknownGuy said:
It seems like the quality of the pictures has been decreased
Understatement. Re-post if yuo want comments to make sense instead of increase your confusion.

I don't understand the signs in your firstway picture. For Pmin the friction has to work opposite from the way for Pmax
Check what P has to be in that case: 0=0 is also an equality ...

I don't understand the signs in your second way picture. It looks like you let friction work in the same direction again ...
mu = 5 is nonsense
 
BvU said:
I don't understand the signs in your firstway picture.
BvU said:
I don't understand the signs in your second way picture.
All looks ok to me.

BvU said:
mu = 5 is nonsense
umm... why?
 
I will write down the calculations in the pictures here just for clarification.

First picture:
For P(min), the box will be on the point of sliding down with P pushing up the slope.
(1):20gcos(60)μ+P(min)=20gsin(60)
For P(max), the box will be on the point of going up with P pushing up the slope.
(2):P(max)=20gcos(60)μ+20gsin(60)

Setting P(max)=2P(min) and solving (1) and (2) gives μ=0.577

Second picture:
For P(min), the box will be on the point of sliding downwards with P pushing down the slope
(1):P+20gsin(60)=20gcos(60)μ
For P(max), the box will be on the point of sliding up with P pushing up the slope
(2):P=20gcos(60)μ+20gsin(60)

Setting P(max)=2P(min) and solving (1) and (2) gives μ=5.20

Note: I looked it up and found that the largest coefficients of friction never surpass 1.5(ex: dry aluminum on self has μ=1.35) let alone alone 5!
Is this enough proof to regard the second method as incorrect?
 
Good thing you translated your fuzzy writing: signs are Ok.
You worked out a second scenario for a bonus (my guess is first scenario was intended by exercise composer) -- ##\mu = 5.2 ## is really an awful lot.
It would mean the block would stay in place on a 79 degree slope ( ## \arctan(5.2)\ ## ) -- without glue. But perhaps the term 'nonsense' is too harsh (maybe someone even has an example?).

I withdraw my nonsense. Haru is right ... again !

Ceterum censeo...
Of course ##\ 2\times 0= 0 \ ## so in my book ## \mu = \tan 60^\circ \ = {1\over 2}\sqrt 3\ ## is also a solution :rolleyes: but I concede the 'twice' in the problem statement makes it an unlikely candidate.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top