yungman
- 5,741
- 294
The is example 10.1 in page 417. The example is the find the current density from given condition:
V=0,\;\;\hbox{ and } \;\;\vec A=\frac{\mu_0 k}{4c}(ct-|x|)^2 \hat z \;\hbox { for x = +ve and }\;\; \vec A=0 \;\;\hbox { for x = -ve.}
c=\frac 1 {\sqrt{\mu_0 \epsilon_0}}
From this, you get:
\vec E= -\frac {\partial \vec A}{\partial t} \;=\; -\frac {\mu_0 k}{2} (ct-|x|)\hat z \;\;\;\hbox { and }\;\;\; \vec B = \nabla X \vec A = ^+_- \hat y \frac{\mu_0 k}{2c}(ct-|x|)
\nabla X \vec B = -\hat z \frac {\mu_0 k}{2c} = \mu_0 \vec J + \mu_0 \epsilon_0 \frac{\partial \vec E}{\partial t} = \mu_0 \vec J -\hat z \mu \epsilon_0 \frac{\partial^2 \vec A}{\partial t^2} = \mu_0 \vec J - \hat z \frac{\mu_0 k c}{2}
\Rightarrow \vec J = -\hat z \frac {\mu_0 k}{2c} + \hat z \frac{\mu_0 k c}{2}
The book claimed \vec J = 0 without going through the steps.
I cannot get that, please help.
Thanks
Alan
V=0,\;\;\hbox{ and } \;\;\vec A=\frac{\mu_0 k}{4c}(ct-|x|)^2 \hat z \;\hbox { for x = +ve and }\;\; \vec A=0 \;\;\hbox { for x = -ve.}
c=\frac 1 {\sqrt{\mu_0 \epsilon_0}}
From this, you get:
\vec E= -\frac {\partial \vec A}{\partial t} \;=\; -\frac {\mu_0 k}{2} (ct-|x|)\hat z \;\;\;\hbox { and }\;\;\; \vec B = \nabla X \vec A = ^+_- \hat y \frac{\mu_0 k}{2c}(ct-|x|)
\nabla X \vec B = -\hat z \frac {\mu_0 k}{2c} = \mu_0 \vec J + \mu_0 \epsilon_0 \frac{\partial \vec E}{\partial t} = \mu_0 \vec J -\hat z \mu \epsilon_0 \frac{\partial^2 \vec A}{\partial t^2} = \mu_0 \vec J - \hat z \frac{\mu_0 k c}{2}
\Rightarrow \vec J = -\hat z \frac {\mu_0 k}{2c} + \hat z \frac{\mu_0 k c}{2}
The book claimed \vec J = 0 without going through the steps.
I cannot get that, please help.
Thanks
Alan
Last edited: