Question on Intro QM pertaining to Harmonic Oscillator

Click For Summary
The discussion revolves around a solution to a question on Intro QM related to the Harmonic Oscillator. The original poster seeks feedback on their solution and requests help in identifying any mistakes. A participant points out a specific error regarding the calculation of 4^2, confirming it equals 16. The original poster acknowledges the mistake and expresses gratitude for the assistance. The conversation highlights the collaborative effort in correcting and improving understanding of quantum mechanics concepts.
warhammer
Messages
164
Reaction score
33
Homework Statement
Consider a system in a state
|ψ >=## frac{5/√50}*|φ0 > +frac{4/√50}*|φ1 > +frac{3/√50}*|φ2 >##
where |φ0 >, |φ1 > and |φ2 > are eigenstates of a harmonic oscillator
in ground, first and second excited state respectively.
(a) Find the average energy of this systemin the state |ψ >.
(b) What is the probability that |ψ > can be found in the state |φ1 >?
Relevant Equations
Avg Energy E=P(j)*E(j) (where E(n)=ℏw(n+0.5)
P(1)=## frac{|φ1|ψ>^2/<ψ|ψ > ##
Hi. I have attached a neatly done solution to the above question. I request someone to please check my solution and help me rectify any possible mistakes that I may have made.

1654354474769.png
 
Physics news on Phys.org
Last line ##4^2=16##. Other than that it looks good.
 
kuruman said:
Last line ##4^2=16##. Other than that it looks good.
Ah yes! Sorry for that silly error, I noticed that now.

And thank you tons for your prompt guidance 🙏🏻
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K