Question on MOS strong inversion

  • Thread starter Thread starter htzzz
  • Start date Start date
  • Tags Tags
    Inversion
AI Thread Summary
In the case of MOS strong inversion, when the gate voltage (Vg) is significantly greater than the threshold voltage (Vth), the equation for gate voltage at threshold becomes less applicable. Instead, the surface potential and depletion width remain relatively constant because the inversion charge at the surface compensates for the gate charge, preventing further growth of the depletion region. The depletion width reaches a maximum (xdmax) and does not increase with higher gate voltages, as the inversion charge increases exponentially with small changes in surface potential. The assumption that the bulk charge in the semiconductor is much greater than the inversion charge becomes invalid in strong inversion. Quantifying inversion charge can be complex, and alternative methods may be needed beyond the basic charge balance equation.
htzzz
Messages
2
Reaction score
0
Hi, I am a bit confused about the MOS strong inversion case.
When Vg>>Vth, is the equation describing gate voltage at threshold still applicable? If not, what is the expression for corresponding surface potential and depletion width. Some books suggest that surface potential and depletion width won't change much, please explain why. If it's not easy to explain by posting, could anyone please send me a link or reference? Thank you!
 
Engineering news on Phys.org
As you increase the charge on the gate, this charge needs to be compensated by charge in the semiconductor. At first, the charge is compensated by an increasing depletion region, which "uncovers" fixed charge in the semiconductor. However, as the gate voltage increases, you reach a point where it is energetically more favorable for charge on the gate to be compensated by inversion charge at the surface instead of further depletion. This is the threshold voltage. At this point the depletion region stops growing (this depletion region width is usually called xdmax), and the inversion charge starts increasing. The surface potential doesn't change much beyond this because the inversion charge is an exponential function of the surface potential, so it only takes a small change in the surface potential to get a large change in the inversion charge.

The maximum depletion width (xdmax) for a uniformly doped semiconductor is given by the relation:
X_{dmax}=\sqrt{\frac{K_s\epsilon_0 k_B T}{q^2N_A} log(\frac{N_A}{n_i})}
 
Thank you phyzguy!

So it means as the gate voltage increases, the voltage across the oxide will increase while the surface potential is constant?

And the assumption that semiconductor bulk charge is much greater than inversion charge (Qb >> Qinv) which was used in deriving the threshold voltage is no longer valid after inversion?

And is there a way to quantify the inversion charge besides using Qg - Qb = Qinv in strong inversion?
 
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top