Question on the degeneracies of a thermodynamic system

1v1Dota2RightMeow
Messages
75
Reaction score
7

Homework Statement


A system possesses three energy levels $$E_1=\varepsilon$$ $$E_2=2\varepsilon$$ $$E_3=3\varepsilon$$ with degeneracies $$g(E_1)=g(E_3)=1$$ $$g(E_2)=2$$. Find the heat capacity of the system.

Homework Equations


$$\beta=\frac{1}{kT}$$
$$Z=\sum_i g_ie^{-\beta \varepsilon_i} \ $$

The Attempt at a Solution


From a beginner's perspective I know to apply the partition function for a system with degeneracies as the first step in order to be able to obtain more information about the system. Thus,

$$Z=g_ie^{-\beta \varepsilon} + 2g_ie^{-\beta 2\varepsilon} + g_ie^{-\beta 3\varepsilon}$$

But I still don't quite understand what's going on here. Also, the hint at the back of the book (Statistical Physics by F. Mandl) simply says to take the zero of the energy scale at $E_1=0$ and then proceeds to give the final answer as: $$C=2k\frac{x^2e^x}{(e^x+1)^2}$$

But this isn't really helpful in understanding the concept. What do the degeneracies of a system do to the solution of the partition function?
 
Physics news on Phys.org
Heat capacity is the heat added per change in temperature. So find the expectation value of the internal energy as a function of temperature, and then take its derivative with respect to temperature.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top