- 188

- 1

## Main Question or Discussion Point

no matter what theory we use , are all UV and IR divergences of the form ??

[tex] \int_{0}^{\infty} dk. k^{m} [/tex] where 'm' is an integer

or there are another divergent integral different from a power-law or logarithmic divergence ?? , and another question , can be this true

[tex] i^{m+n}D^{m}\delta (w) D^{n}\delta (w)= Fourier. transform (\int_{-\infty}^{\infty}dt.t^{n}(x-t)^{m}) [/tex]

where i have used the fact that the Fourier transform of a convolution of two functions (f*g) is just the product of the Fourier transform F(w)G(w)

[tex] \int_{0}^{\infty} dk. k^{m} [/tex] where 'm' is an integer

or there are another divergent integral different from a power-law or logarithmic divergence ?? , and another question , can be this true

[tex] i^{m+n}D^{m}\delta (w) D^{n}\delta (w)= Fourier. transform (\int_{-\infty}^{\infty}dt.t^{n}(x-t)^{m}) [/tex]

where i have used the fact that the Fourier transform of a convolution of two functions (f*g) is just the product of the Fourier transform F(w)G(w)