Question: Shadow Speed Related Rates

Click For Summary
The discussion focuses on solving a related rates problem involving similar triangles. The initial equations derived include relationships between variables x and y, leading to the differentiation of x with respect to t. A key point is the need to apply the chain rule correctly when differentiating, which was initially overlooked. The correct differentiation ultimately leads to the conclusion that dx/dt equals 1500. The conversation emphasizes the importance of proper application of calculus principles in solving related rates problems.
Karol
Messages
1,380
Reaction score
22

Homework Statement


Snap1.jpg

Snap2.jpg


2. Homework Equations

Similar triangles

The Attempt at a Solution


Capture.JPG

$$\frac{y}{30}=\frac{50}{x}~\rightarrow~x=\frac{1500}{y}$$
$$\frac{dx}{dt}=-\frac{1500}{y^2}$$
$$s=16t^2=16\frac{1}{4}=4$$
$$\frac{dx}{dt}=-\frac{1500}{16}$$
The answer should be ##~\displaystyle \frac{dx}{dt}=1500##
 
Physics news on Phys.org
Karol said:

Homework Statement


View attachment 211572
View attachment 211573

2. Homework Equations

Similar triangles

The Attempt at a Solution


View attachment 211574
$$\frac{y}{30}=\frac{50}{x}~\rightarrow~x=\frac{1500}{y}$$
$$\frac{dx}{dt}=-\frac{1500}{y^2}$$
$$s=16t^2=16\frac{1}{4}=4$$
$$\frac{dx}{dt}=-\frac{1500}{16}$$
The answer should be ##~\displaystyle \frac{dx}{dt}=1500##

You want to differentiate ##x## with respect to ##t##, not ##y##. Remember the chain rule?
 
When you differentiated with respect to ##t##, you didn't apply the chain rule...

edit: Oops...beaten to the punch!
 
$$\frac{dx}{dt}=-\frac{1500}{y^2}\frac{dy}{dt}$$
$$y=16t^2~\rightarrow~\frac{dy}{dt}=32t$$
$$\frac{dx}{dt}=-\frac{1500}{16}\cdot 32\cdot \frac{1}{2}=1500$$
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
12
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
48
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K