yungman
- 5,741
- 294
This is from Field and Waves Electromagnetic by Cheng page 602. THis is regarding to elemental dipoles. Given: [Quote Book]
i(t)=\Re e [Ie^{j\omega t}]=I\; cos\;\omega t\;\;\hbox { (11.7)}
Since the current vanishes at the ends of the wire, charge must be deposited there.
i(t)=^+_-\frac {d q(t)}{dt} \;\;\hbox { (11.8)}
In phasor notation, q(t)=\Re e[Qe^{j\omega t}], we have
I=^+_-j\omega Q\;\;\hbox{ (11.9)}
or Q = ^+ _- \frac {I} {j \omega}\;\;\hbox {(11.10)}
[End Book]
This is what my calculation of q(t):
i(t)=\frac {d [q(t)]}{dt} = \Re e \left [ Q \frac {d (e^{j\omega t})}{dt}\right ] =\Re e [ Q j\omega e^{j\omega t}] = -\omega \;Q \;sin\;\omega t
You see i(t) not equal to I\; cos\;\omega t
I just don't see how this work! Please help.
i(t)=\Re e [Ie^{j\omega t}]=I\; cos\;\omega t\;\;\hbox { (11.7)}
Since the current vanishes at the ends of the wire, charge must be deposited there.
i(t)=^+_-\frac {d q(t)}{dt} \;\;\hbox { (11.8)}
In phasor notation, q(t)=\Re e[Qe^{j\omega t}], we have
I=^+_-j\omega Q\;\;\hbox{ (11.9)}
or Q = ^+ _- \frac {I} {j \omega}\;\;\hbox {(11.10)}
[End Book]
This is what my calculation of q(t):
i(t)=\frac {d [q(t)]}{dt} = \Re e \left [ Q \frac {d (e^{j\omega t})}{dt}\right ] =\Re e [ Q j\omega e^{j\omega t}] = -\omega \;Q \;sin\;\omega t
You see i(t) not equal to I\; cos\;\omega t
I just don't see how this work! Please help.
Last edited: