unscientific
- 1,728
- 13
Taken from Hobson's book:
How did they get this form?
\dot u^{\mu} = - \Gamma_{v\sigma}^\mu u^v u^\sigma
\dot u^{\mu} g_{\mu \beta} \delta_\mu ^\beta = - g_{\mu \beta} \delta_\mu ^\beta \Gamma_{v\sigma}^\mu u^v u^\sigma
\dot u_{\mu} = - \frac{1}{2} g_{\mu \beta} \delta_\mu ^\beta g^{\mu \gamma} \left(\partial_v g_{\sigma \gamma} + \partial_\sigma g_{v\gamma} - \partial_\gamma g_{v\sigma} \right)
= - \frac{1}{2} \delta_\mu ^\beta \delta_\beta ^\gamma \left(\partial_v g_{\sigma \gamma} + \partial_\sigma g_{v\gamma} - \partial_\gamma g_{v\sigma} \right)
= -\frac{1}{2} \left( \partial_v g_{\sigma \mu} + \partial_\sigma g_{v\mu} - \partial_\mu g_{v\sigma} \right)
Why are the first two terms zero?
How did they get this form?
\dot u^{\mu} = - \Gamma_{v\sigma}^\mu u^v u^\sigma
\dot u^{\mu} g_{\mu \beta} \delta_\mu ^\beta = - g_{\mu \beta} \delta_\mu ^\beta \Gamma_{v\sigma}^\mu u^v u^\sigma
\dot u_{\mu} = - \frac{1}{2} g_{\mu \beta} \delta_\mu ^\beta g^{\mu \gamma} \left(\partial_v g_{\sigma \gamma} + \partial_\sigma g_{v\gamma} - \partial_\gamma g_{v\sigma} \right)
= - \frac{1}{2} \delta_\mu ^\beta \delta_\beta ^\gamma \left(\partial_v g_{\sigma \gamma} + \partial_\sigma g_{v\gamma} - \partial_\gamma g_{v\sigma} \right)
= -\frac{1}{2} \left( \partial_v g_{\sigma \mu} + \partial_\sigma g_{v\mu} - \partial_\mu g_{v\sigma} \right)
Why are the first two terms zero?