Quick question about a simple perturbation theory question

joker_900
Messages
53
Reaction score
0

Homework Statement


A particle of charge q and mass m is in a harmonic oscillator potential V0=0.5m(wx)^2. A perturbation is introduced which changes the potential to V=V0 + dV with dV=0.5sm(wx)^2 where s is small.

Use perturbation theory to compute the first order shift in the ground state energy.


Homework Equations


E0' - E0 = <0|h|0>


The Attempt at a Solution


Well I've done it ish but am kind of confused about where the q is supposed to be used. Should I multiply V0 by q to get the potential energy, and use that in H?

I'm used to the hamiltonian for a SHO just having 0.5m(wx)^2 as the potential term.

Thanks
 
Physics news on Phys.org
Energy is charge times electric field, so q times V is energy.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top