Quotient & Product Rule: Same funtion, different answers?

AntSC
Messages
65
Reaction score
3
Can someone check my working. I don't understand why i am getting different answers?
u(x,t)=\frac{{e}^{-\frac{x^2}{4Dt}}}{\sqrt{4Dt}}
Differentiate w.r.t 't' by quotient rule:
\frac{\partial u}{\partial t}=\left[ \frac{1}{\sqrt{4Dt}}\cdot \frac{x^2}{4Dt^2}\cdot {e}^{-\frac{x^2}{4Dt}}-{e}^{-\frac{x^2}{4Dt}}\cdot \frac{1}{\sqrt{4D}}\cdot \frac{-1}{2t\sqrt{t}} \right]\frac{1}{4Dt}
\frac{\partial u}{\partial t}=\left[ \frac{x^2}{4Dt^2}u(x,t)+\frac{1}{2t}u(x,t)\right]\frac{1}{4Dt}
For the product rule, write as -
u(x,t)={\left(4D \right)}^{-\frac{1}{2}}{t}^{-\frac{1}{2}}{e}^{-\frac{x^2}{4Dt}}
Differentiate w.r.t 't' by product rule:
\frac{\partial u}{\partial t}=\frac{1}{\sqrt{4D}}\left[ {e}^{-\frac{x^2}{4Dt}}\cdot \frac{-1}{2t\sqrt{t}}+\frac{1}{\sqrt{t}}\cdot \frac{x^2}{4Dt^2}\cdot {e}^{-\frac{x^2}{4Dt}} \right]
\frac{\partial u}{\partial t}=\frac{x^2}{4Dt^2}u(x,t)-\frac{1}{2t}u(x,t)
This is clearly not the same.
What am i doing wrong?
 
Last edited:
Physics news on Phys.org
You didn't use the quotient rule correctly. Denoting ##u(x,t)=\frac{v(x,t)}{w(t)}## where ##v(x,t)=\exp\left(\frac {-x^2}{4Dt}\right)## and ##w(t)=\sqrt{4Dt}##, then the quotient rule says
$$\frac{\partial u(x,t)}{\partial t} = \frac{\frac{\partial v(x,t)}{\partial t}w(t) - v(x,t)\frac{\partial w(t)}{\partial t}}{w(t)^2}$$
 
D H said:
You didn't use the quotient rule correctly. Denoting ##u(x,t)=\frac{v(x,t)}{w(t)}## where ##v(x,t)=\exp\left(\frac {-x^2}{4Dt}\right)## and ##w(t)=\sqrt{4Dt}##, then the quotient rule says
$$\frac{\partial u(x,t)}{\partial t} = \frac{\frac{\partial v(x,t)}{\partial t}w(t) - v(x,t)\frac{\partial w(t)}{\partial t}}{w(t)^2}$$
The terms you wrote for v(x,t) and w(t) is what i chose for the quotient rule. The w(t)^2 is the \frac {1}{4Dt} term outside the brackets.
I don't see what am i missing?
 
You did a couple of things wrong. You computed ##\frac{d}{dt}\sqrt{4Dt}## incorrectly, and you lost a radical term somewhere along the line in your quotient rule computations.
 
D H said:
You did a couple of things wrong. You computed ##\frac{d}{dt}\sqrt{4Dt}## incorrectly, and you lost a radical term somewhere along the line in your quotient rule computations.

I've spotted my stupid mistake. Thanks for the pointer. I've been going round in circles with this.
Cheers
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top