MHB Quotient Rings .... Remarks by Adkins and Weintraub ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    quotient Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading "Algebra: An Approach via Module Theory" by William A. Adkins and Steven H. Weintraub ...

I am currently focused on Chapter 2: Rings ...

I need help with fully understanding some remarks by Adkins and Weintraub on quotient rings on page 59 in Chapter 2 ...

The remarks by Adkins and Weintraub on quotient rings read as follows:
View attachment 7948
In the above text from A&W we read the following:

" ... ... All that needs to be checked is that this definition is independent of the choice of coset representatives. To see this suppose $$r + I = r' + I$$ and $$s + I = s' + I$$. Then $$r' = r + a$$ and $$s' = s + b$$ where $$a,b \in I$$. ... ... ... "Can someone please (fully) explain how/why it is that $$r + I = r' + I$$ and $$s + I = s' + I$$ imply that $$r' = r + a$$ and $$s' = s + b$$ where $$a,b \in I$$ ... ... ?
Help will be appreciated ...

Peter
 
Physics news on Phys.org
Hi, Peter.

Peter said:
Can someone please (fully) explain how/why it is that $$r + I = r' + I$$ and $$s + I = s' + I$$ imply that $$r' = r + a$$ and $$s' = s + b$$ where $$a,b \in I$$ ... ... ?

Here is one possible argument:

By definition, $r + I = \{r+a: a\in I\}$ and $r' + I = \{r'+a: a\in I\}.$ Now, $r'\in r' + I$ because $0\in I$. Since $r'\in r'+I=r+I=\{r+a: a\in I\},$ $r'=r+a$ for some $a\in I$.
 
GJA said:
Hi, Peter.
Here is one possible argument:

By definition, $r + I = \{r+a: a\in I\}$ and $r' + I = \{r'+a: a\in I\}.$ Now, $r'\in r' + I$ because $0\in I$. Since $r'\in r'+I=r+I=\{r+a: a\in I\},$ $r'=r+a$ for some $a\in I$.
Well! Thanks! Really clear ...

Appreciate your help GJA ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top