Track bars, some time called J-bars are more correctly called panhard bars.
(J-bars are mechanically equivalent to straight panhard bars of the same length from center to center. Their J shape simply provides driveshaft clearance.)
Designed to locate a solid axle side to side, or laterally. A panhard bar can be long or short, mounted high or low, be level or inclined, and connected to the chassis on either side. All of these variables affect handling.
By now I assume you know about what a Roll Center is and how its height and location affect handling. An imaginary line called the roll axis connects the front and rear roll centers. A turning car experiences a radially outward inertia force moving through both roll centers which tries to roll the chassis around the roll axis.
This force transfers this load the inside tires to the outside tires. Along with other variables, the relative heights of the front and rear roll centers affect the front-to-rear distribution of the car’s roll stiffness and thus the distribution of the transferred load. The end with the greatest roll stiffness will receive the largest percentage of the transferred load, and will tend to lose side bite first.
All else being equal, raising the rear roll center increases the rear roll stiffness and thus the percentage of the transferred load that goes to the outside rear tire. That loosens the car up. Lowering the rear roll center has the opposite effect.
All panhard bars swing in arcs, which means that the roll center moves up and down with suspension travel, including chassis roll. If the panhard bar is mounted to the right side of the chassis then the rear roll center will become lower as the chassis rolls to the right in a left-hand turn. That loosen the rear end. Right-side chassis mounts are the most common on pavement, while left-side mounts are more common on dirt. With a left-side chassis mount, the roll center will rise as the chassis rolls to the right, tightening the car up.
Panhard bars can also push and pull the rear end sideways as the suspension deflects, especially short panhard bars. Lateral rear axle movement generally causes rear roll steer. If the rear roll steer increases the right-side wheelbase with respect to the left, the car will have roll-over steer. Shorter panhard bars translate the rear more than longer ones, and inclined bars further increase the amount of axle movement if their inclination increases as the chassis rolls. A short panhard bar connected on the left and inclined downward toward its attachment at the rear axle will pull the rear axle toward the car’s left side quite a bit as the car rolls right. This is common on dirt race cars. The panhard bar controls the amount of lateral axle motion, and the geometry of the other suspension links determines how much the rear axle rear steers. Raising the panhard bar where it connects to the chassis will increase the amount that it pulls the axle to the left as the car rolls. With most dirt suspensions, this adjustment will increase roll oversteer, loosening the chassis up in the turns. Inclined panhard bars also produce vertical forces that act on the car’s chassis and the rear axle at the bar’s attachment points. This is the second fundamental reason that panhard bars affect a car’s handling.
When a panhard bar is level, the rear tires’ entire lateral grip is transferred into the chassis at the bar’s end horizontally. But if the bar is inclined upward to the left, the forces transmitted into the chassis will have two components – one horizontal and another vertical. The panhard bar contributes to chassis roll because it pushes up at the car’s left rear. There will also be an equal but opposite force pushing straight down on the axle where the bar connects to it. These opposing vertical forces increase as the inclination of the panhard bar increases, especially with larger angles.
If the bar is connected on the right chassis mount and inclined upward to the right, it will pull the chassis down on the right side, but it will also unload the axle with a vertical force up, where it connects to the axle and unload the left rear.
With inclined panhard bars – and all bars incline at least a little as they swing through their arcs – the point where the bar connects to the rear axle is important. If it’s at the center, its vertical force will be equally divided between the two rear tires. If it’s to the right, proportionately more of the vertical force will go to the right rear tire. The J-bars commonly used on dirt race cars are generally mounted to the right of the axle’s center line and inclined upward toward their left chassis mount. That sends more downward vertical load to the right rear as the car turns.