Radial and Tangential Acceleration

AI Thread Summary
The discussion focuses on calculating the tangential and total acceleration of a train slowing down while navigating a circular turn. For tangential acceleration, the average change in speed over time is initially considered, but it is clarified that the derivative of velocity should be used instead. The total acceleration requires combining both radial and tangential components, with the radial acceleration calculated using the speed at a specific moment. The importance of converting units to meters for accurate calculations is emphasized, and the assumption of constant tangential acceleration throughout the turn is noted. Overall, the conversation highlights the need for precise definitions and calculations in physics problems involving acceleration.
niyati
Messages
63
Reaction score
0
A train slows down at a constant rate as it rounds a sharp circular horizontal turn. Its initial speed is not known. It takes 17.7 s to slow down from 68 km/h to 26 km/h. The radius of the curve is .184 km. As the train goes around the turn, (a) what is the magnitude to the tangential component of the acceleration and (b) at the moment the train's speed is 59 km/h, what is the magnitude of the total acceleration? Answer in units of m/s^2.

(a) Tangential acceleration is given by dlvl/dt. However, I am finding the average acceleration by subtracting 68 from 26, and then dividing it by 17.7 seconds. The negative sign would disappear. However, tangential acceleration is the derivative of velocity at that moment, not the average acceleration over a period of time. D:

(b) Total acceleration is the quadrature of radial acceleration and tangential acceleration. I suppose I could square my answer in (a), and then compute a[r] by squaring 59 and dividing it by .184 (and then tacking on the negative sign). Once I have a[r] and a[t], I will square them both, add them, and then take the square root. But, could I use the different part derived from different velocities (tangential acc. deals with a range of velocities, while radial acc. has the one given in the problem)?

I know, also, that I must convert everything to meters, but I will do that last.
 
Physics news on Phys.org
I think they want you to assume tangential acceleration is constant over the turn...

everything looks good.
 
Wow.

Thanks. (Yay for getting better at this. Even if it's just plugging in numbers.)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top