Radiation - finding emissivity of a sphere

AI Thread Summary
The discussion focuses on calculating the emissivity of a sphere using the equation e=dQ/dt / (A*5.67E-8*T^4), where the surface area is calculated as 4(pi)r^2. The user initially arrives at an emissivity of 0.01625, while the expected answer is 0.0524. Confusion arises regarding the treatment of surrounding air, which is suggested to be considered as a black body, affecting the net radiation due to its lower temperature. It is clarified that the net radiation is the difference between emitted and absorbed radiation, with the absorbed radiation dependent on the emissivity value. The discussion emphasizes the importance of accurately accounting for the surrounding environment's temperature in radiation calculations.
JoeyBob
Messages
256
Reaction score
29
Homework Statement
see attached
Relevant Equations
dQ/dt = Ae(5.67*10^-8)*T^4
So using the above equation, e=dQ/dt / (A*5.67E-8*303.8^4)

The surface area of a sphere is 4(pi)r^2 and I get 136.8478 m^2. dQ/dt would be the net radiation (I think? Its in the correct units), 1074W.

Plugging everything in I get 0.01625, but the answer is 0.0524.

Now as I was writing this I figured out how to do it by trial and error but am a bit confused. So apparently the surrounding air is decreasing the net radiation? Is that because its of a lower temperature? So if the air was hotter would I add it instead of subtracting it? Below is the equation I used to solve.

dQ/dt = SA * constant * e * (T of sphere) ^4 - SA * constant * e * (T of air) ^4
 

Attachments

  • question.PNG
    question.PNG
    12.7 KB · Views: 152
Physics news on Phys.org
The question setter seems to expect you to treat the surrounding air as a black body, so subtract the radiation the sphere absorbs from that. The fraction it absorbs will be governed by the same e value.
But it's nonsense. It takes a pretty thick layer of air to radiate much at all, and it certainly is not a black body (fortunately). Even outdoors, most of the received radiation would be from other solid bodies, such as the ground.
 
haruspex said:
The question setter seems to expect you to treat the surrounding air as a black body, so subtract the radiation the sphere absorbs from that. The fraction it absorbs will be governed by the same e value.
But it's nonsense. It takes a pretty thick layer of air to radiate much at all, and it certainly is not a black body (fortunately). Even outdoors, most of the received radiation would be from other solid bodies, such as the ground.
Am I understanding correctly that I subtract the absorbed radiation because its of a lower temperature? In other words, would I add it instead if the surrounding black body had a higher temperature than the sphere?
 
JoeyBob said:
Am I understanding correctly that I subtract the absorbed radiation because its of a lower temperature? In other words, would I add it instead if the surrounding black body had a higher temperature than the sphere?
No, you are told the net radiation from the sphere, so that's radiation out minus radiation in. And 'in' should only be what is absorbed, so depends on e.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top