I Radio Comm Between 2 Points Diff Gravity: True?

Hongo
Messages
1
Reaction score
0
A source that is orbiting close to a singularity of a black hole is transmitting a radio frequency signal that lasts 60 seconds and is repeated infinitely. The signal is being transmitted using the amplitude modulation method (AM Radio). Let suppose that each minute passing in the transmitting source location is equivalent to 100 minutes for the receiver, and that the distance between the transmitter and receiver is time invariant. For this situation to be consistent, it must mean that the electromagnetic wave is stretched. Therefore, if the original signal was modulated on a 1000 kHz electromagnetic wave, the wave received must be of 10 kHz. That would be a similar effect as a doppler effect but the shift of the frequency is produced by gravity instead of the velocity. Is this statement true? Would this mean also that the frequency of a source of light will different depending on the curvature of space-time in the location of the source and the observer? My field is Chemistry so I am sorry in advance for my lack of expertise in General Relativity.
 
Physics news on Phys.org
I guess you meant to write "orbiting close to the event horizon of a black hole"?
Hongo said:
For this situation to be consistent, it must mean that the electromagnetic wave is stretched. Therefore, if the original signal was modulated on a 1000 kHz electromagnetic wave, the wave received must be of 10 kHz.
Yes, but it is not good to view it as "stretched waves", because it tends to conjure up images of 'expanding space' between the source and receiver, which can be very confusing. It is simply gravitational (and velocity) time dilation due to speed and gravitational potential differences between the source and receiver.
If you ignore any relative orbital speeds between source and receiver, the frequency ratio is
\frac{f_r}{f_s}= \frac{\sqrt{1-2GM/r_s c^2}}{\sqrt{1-2GM/r_r c^2}}
where the subscripts indicate source and receiver and r are the orbital radii.
 
Hongo said:
A source that is orbiting close to a singularity of a black hole is transmitting a radio frequency signal that lasts 60 seconds and is repeated infinitely. The signal is being transmitted using the amplitude modulation method (AM Radio). Let suppose that each minute passing in the transmitting source location is equivalent to 100 minutes for the receiver, and that the distance between the transmitter and receiver is time invariant. For this situation to be consistent, it must mean that the electromagnetic wave is stretched. Therefore, if the original signal was modulated on a 1000 kHz electromagnetic wave, the wave received must be of 10 kHz. That would be a similar effect as a doppler effect but the shift of the frequency is produced by gravity instead of the velocity. Is this statement true? Would this mean also that the frequency of a source of light will different depending on the curvature of space-time in the location of the source and the observer? My field is Chemistry so I am sorry in advance for my lack of expertise in General Relativity.

Essentially, yes. Though I'd change "orbiting" to "hovering" - unless you have a rapidly spinning black hole like the one Kip Thorne imagined in "Interstellar", you won't get a stable orbit with that sort of time dilation, and keeping the distance / propagation delay to the receiver time invariant is easier, too.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top