azatkgz
- 182
- 0
Homework Statement
Find the radius and interval of convergence for the following power series.
\sum_{n = 2}^{\infty}\frac {(1 + 2cos\frac {\pi n}{4})^n}{lnn}x^n
The Attempt at a Solution
R = \frac {1}{\lim_{n\rightarrow\infty}\sqrt [n]{\frac {(1 + 2cos\frac {\pi n}{4})^n}{lnn}}} = \lim_{n\rightarrow\infty}\frac {e^{\frac {ln(lnn)}{n}}}{(1 + 2cos\frac {\pi n}{4})}
In answers R=\frac{1}{3}.
\lim_{n\rightarrow\infty}e^{\frac {ln(lnn)}{n}} = 1.Then is
\lim_{n\rightarrow\infty}(1 + 2cos\frac {\pi n}{4}) = 3?
As I know usually \lim_{x\rightarrow 0}cosx=1,not
\lim_{x\rightarrow\infty}cosx=1