Rail Guns: Dual Rods & Current Flow

AI Thread Summary
Rail guns utilize electromagnetic forces to propel projectiles along conductive rails, and the dynamics change when two rods are involved. If both rods are placed in a rail gun, they will experience forces based on their current flow and magnetic interactions, potentially repelling each other depending on the design. The engineering of the rail gun is crucial, as it determines how the rods interact and whether they can be effectively launched together. Comparatively, particle accelerators manage multiple charged particles by spacing them adequately to minimize repulsion effects. Understanding these principles is essential for optimizing rail gun designs for dual projectile launches.
bink_02
Messages
2
Reaction score
0
Ok, so we learned about rail guns today (they are so freakin' cool), and I understand how it moves one rod down the rails... however, what happens if there are two?
Won't both move down the rails (away from battery) since the current is flowing clockwise, or will they repel each other?
 
Physics news on Phys.org
Well, that's more of an engineering question than anything else. It would depend on the design of the gun.

Particle accelerators, like the Stanford Linear Accelerator, propel multiple charged particles at the same time by (in the case of SLAC, at least) having them "surf" on microwaves. The electrons would repel each other, but they're far enough apart that the design of the accelerator minimizes the effects of that interaction.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top