Random Variables - Distribution and Expectations

topgun08
Messages
15
Reaction score
0
Here is the homework question. I only have an issue with part c but have shown all my work up until then. Any help is appreciated!

Mr and Mrs Brown decide to continue having children until they either have their first boy or until they have
five children. Assume that each child is equally likely to be a boy or a girl, independent of all other children,
and that there are no multiple births. Let B and G denote the numbers of boys and girls respectively that the
Browns have.
(a) Write down the sample space together with the probability of each sample point.
Sample Space with probability = {B 1/2, GB 1/4, GGB 1/8, GGGB, 1/16, GGGGB 1/32, GGGGG 1/32}
(b) Write down the distributions of the random variables B and G.
Pr[B=0] = 1/32, Pr[B=1] = 31/32
Pr[G=0] = 1/2, Pr[G=1] = 1/4, Pr[G=2] = 1/8, Pr[G=3] = 1/16, Pr[G=4] = 1/32, Pr[G=5] = 1/32,

(c) Compute the expectations of B and G using a direct calculation
E(B) = 31/32

Is this below part correct. For some reason I don't think it could be correct.
E(G) = 31/32?
 
Physics news on Phys.org
topgun08 said:
Here is the homework question. I only have an issue with part c but have shown all my work up until then. Any help is appreciated!

Mr and Mrs Brown decide to continue having children until they either have their first boy or until they have
five children. Assume that each child is equally likely to be a boy or a girl, independent of all other children,
and that there are no multiple births. Let B and G denote the numbers of boys and girls respectively that the
Browns have.
(a) Write down the sample space together with the probability of each sample point.
Sample Space with probability = {B 1/2, GB 1/4, GGB 1/8, GGGB, 1/16, GGGGB 1/32, GGGGG 1/32}
(b) Write down the distributions of the random variables B and G.
Pr[B=0] = 1/32, Pr[B=1] = 31/32
Pr[G=0] = 1/2, Pr[G=1] = 1/4, Pr[G=2] = 1/8, Pr[G=3] = 1/16, Pr[G=4] = 1/32, Pr[G=5] = 1/32,

(c) Compute the expectations of B and G using a direct calculation
E(B) = 31/32

Is this below part correct. For some reason I don't think it could be correct.
E(G) = 31/32?

Hey topgun08 and welcome to the forums.

Assuming your distribution for G is correct in part b, your answer is also correct. I used the calculation:

E[G] = 0x1/2 + 1x1/4 + 2x1/8 + 3x1/16 + 4x1/32 + 5x1/32 = 0.96875 = 31/32
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top