Hi PF,(adsbygoogle = window.adsbygoogle || []).push({});

I posted this in HW a week ago and got no response. Might be a bit beyond the typical HW forum troller. So, please excuse the double-post.

1. The problem statement, all variables and given/known data

I'm trying to derive the rate-of-strain tensor in cylindrical coords, starting with the Christoffel symbols.

2. Relevant equations

The cylindrical coordinate Christoffel matrices:

\begin{equation}\Gamma^r=\left(

\def\arraystretch{1.5}\begin{array}{ccc}

0&0&0\\

0&-r&0\\

0&0&0

\end{array}\right)

\qquad

\Gamma^\phi=\left(

\def\arraystretch{1.5}\begin{array}{ccc}

0&\dfrac{1}{r}&0\\

\dfrac{1}{r}&0&0\\

0&0&0

\end{array}\right)

\qquad

\Gamma^z=\left(

\def\arraystretch{1.5}\begin{array}{ccc}

0&0&0\\

0&0&0\\

0&0&0

\end{array}\right).

\end{equation}

The gradient of the basis vectors in cylindrical coordinates is

defined in terms of the Christoffel symbols, \[\Gamma^k_{ij}\] such that

\begin{equation}

\nabla_ie_j=\Gamma^k_{ij}e_k.

\end{equation}

The only non-zero terms are

\begin{equation}

\nabla_r e_\phi = \frac{1}{r}e_\phi,\qquad \nabla_\phi e_r =

\frac{1}{r}e_\phi,\qquad \nabla_\phi e_\phi = -r e_r

\end{equation}

3. The attempt at a solution

\begin{eqnarray}

\underline{\underline{\dot{\gamma}}}&=&\nabla\underline{v}= \left(

\def\arraystretch{1.2}\begin{array}{c}

\nabla_r(\underline{v})\\

\nabla_\phi(\underline{v})\\

\nabla_z(\underline{v})

\end{array}\right)=\left(

\def\arraystretch{1.2}\begin{array}{c}

\nabla_r(v_r e_r+v_\phi e_\phi+v_z e_z)\\

\nabla_\phi(v_r e_r+v_\phi e_\phi+v_z e_z)\\

\nabla_z(v_r e_r+v_\phi e_\phi+v_z e_z)

\end{array}\right)\\

&=& \left(

\def\arraystretch{2.2}\begin{array}{c}

(\nabla_rv_r)e_r+\left(\nabla_rv_\phi +v_\phi\dfrac{1}{r}\right)e_\phi+(\nabla_rv_z)e_z\\

(\nabla_\phi v_r-v_\phi r)e_r+\left(\nabla_\phi v_\phi +v_r\dfrac{1}{r}\right )e_\phi +(\nabla_\phi v_z)e_z\\

(\nabla_zv_r)e_r+(\nabla_zv_\phi) e_\phi+(\nabla_zv_z) e_z

\end{array}\right)\nonumber.

\end{eqnarray}

Grouping by basis vectors into individual columns,

\begin{eqnarray}

\underline{\underline{\dot{\gamma}}}

&=&\left(

\def\arraystretch{2.2}\begin{array}{ccc}

\dfrac{\partial v_r }{\partial r}& \dfrac{\partial v_\phi}{\partial r}+\dfrac{v_\phi}{r} & \dfrac{\partial v_z}{\partial r}\\

\dfrac{1}{r}\dfrac{\partial v_r}{\partial\phi}-v_\phi r & \dfrac{1}{r}\dfrac{\partial v_\phi}{\partial\phi}

+\dfrac{v_r}{r} & \dfrac{1}{r}\dfrac{\partial v_z}{\partial\phi} \\

\dfrac{\partial v_r}{\partial z} & \dfrac{\partial v_\phi}{\partial z}

& \dfrac{\partial v_z}{\partial z}

\end{array}\right)

\end{eqnarray}

Symmetrizing,

\begin{eqnarray}

\underline{\underline{\dot{\gamma}}}&=&\frac{\nabla\underline{v}}{2}+\frac{(\nabla\underline{v})^T}{2}\\

&=&\frac{1}{2}\left(

\def\arraystretch{2.2}\begin{array}{ccc}

2\dfrac{\partial v_r }{\partial r}& \dfrac{1}{r}\dfrac{\partial v_r}{\partial\phi}-v_\phi r+\dfrac{\partial v_\phi}{\partial r}+\dfrac{v_\phi}{r} & \dfrac{\partial v_r}{\partial z}+\dfrac{\partial v_z}{\partial r}\\

\dfrac{1}{r}\dfrac{\partial v_r}{\partial\phi}-v_\phi r+\dfrac{\partial v_\phi}{\partial r}+\dfrac{v_\phi}{r} & 2\left(\dfrac{1}{r}\dfrac{\partial v_\phi}{\partial\phi}

+\dfrac{v_r}{r}\right) & \dfrac{\partial v_\phi}{\partial z}+ \dfrac{1}{r}\dfrac{\partial v_z}{\partial\phi} \\

\dfrac{\partial v_r}{\partial z}+\dfrac{\partial v_z}{\partial r} & \dfrac{\partial v_\phi}{\partial z}+\dfrac{1}{r}\dfrac{\partial v_z}{\partial\phi}

& 2\dfrac{\partial v_z}{\partial z}.\nonumber

\end{array}\right)

\end{eqnarray}

To check, I compared this to the rate-of-strain

tensor reported in Batchelor (1967, pg. 602):

\begin{eqnarray}

\underline{\underline{\dot{\gamma}}}&=&\frac{1}{2}\left(

\def\arraystretch{2.2}\begin{array}{ccc}

2\dfrac{\partial v_r }{\partial r}& \dfrac{1}{r}\dfrac{\partial v_r}{\partial\phi}+r\dfrac{\partial}{\partial r}\left(\dfrac{v_\phi}{r}\right) & \dfrac{\partial v_r}{\partial z}+\dfrac{\partial v_z}{\partial r}\\

\dfrac{1}{r}\dfrac{\partial v_r}{\partial\phi}+r\dfrac{\partial}{\partial r}\left(\dfrac{v_\phi}{r}\right) & 2\left(\dfrac{1}{r}\dfrac{\partial v_\phi}{\partial\phi}

+\dfrac{v_r}{r}\right) & \dfrac{\partial v_\phi}{\partial z}+ \dfrac{1}{r}\dfrac{\partial v_z}{\partial\phi} \\

\dfrac{\partial v_r}{\partial z}+\dfrac{\partial v_z}{\partial r} & \dfrac{\partial v_\phi}{\partial z}+\dfrac{1}{r}\dfrac{\partial v_z}{\partial\phi}

& 2\dfrac{\partial v_z}{\partial z}

\end{array}\right)\\

&=&\frac{1}{2}\left(

\def\arraystretch{2.2}\begin{array}{ccc}

2\dfrac{\partial v_r }{\partial r}& \dfrac{1}{r}\dfrac{\partial

v_r}{\partial\phi}+\dfrac{\partial v_\phi}{\partial r}-\dfrac{v_\phi}{r} & \dfrac{\partial v_r}{\partial z}+\dfrac{\partial v_z}{\partial r}\\

\dfrac{1}{r}\dfrac{\partial

v_r}{\partial\phi}+\dfrac{\partial v_\phi}{\partial r}-\dfrac{v_\phi}{r} & 2\left(\dfrac{1}{r}\dfrac{\partial v_\phi}{\partial\phi}

+\dfrac{v_r}{r}\right) & \dfrac{\partial v_\phi}{\partial z}+ \dfrac{1}{r}\dfrac{\partial v_z}{\partial\phi} \\

\dfrac{\partial v_r}{\partial z}+\dfrac{\partial v_z}{\partial r} & \dfrac{\partial v_\phi}{\partial z}+\dfrac{1}{r}\dfrac{\partial v_z}{\partial\phi}

& 2\dfrac{\partial v_z}{\partial z}

\end{array}\right) .\nonumber

\end{eqnarray}

As you can see, the (2,1),(1,2) elements are very different. What am I missing?

Thanks in advance,

Jeff

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Rate-of-strain tensor in cylindrical coords.

**Physics Forums | Science Articles, Homework Help, Discussion**