Ratio of the rate of decay of R to that of S after 2 hours

  • Thread starter Thread starter moenste
  • Start date Start date
  • Tags Tags
    Decay Rate Ratio
AI Thread Summary
The discussion focuses on calculating the decay rates of two radioactive sources, R and S, with half-lives of 2 hours and 1 hour, respectively. The ratio of the rate of decay of R to S is determined to be 1:2 initially and 1:1 after 2 hours, reflecting S's faster decay rate. After 2 hours, 75% of the radioactive nuclei in S have decayed, leaving only 25% remaining. The calculations involve understanding the relationship between half-lives and decay rates, emphasizing that decay rates are inversely proportional to half-lives. The approach simplifies the process by using ratios rather than complex calculations.
moenste
Messages
711
Reaction score
12

Homework Statement


At a certain time, two radioactive sources R and S contain the same number of radioactive nuclei. The half-life is 2 hours for R and 1 hour for S. Calculate:

(a) the ratio of the rate of decay of R to that of S at this time.
(b) the ratio of the rate of decay of R to that of S after 2 hours.
(c) the proportion of the radioactive nuclei in S which have decayed in 2 hours.

Answers: (a) 1 : 2, (b) 1 : 1, (c) 75 %.

2. The attempt at a solution
I get how to approach (c). At t = 0 hours we have 100 % of S, in 1 hour we'll have 50 % of it and in one more hour we'll have half of that -- 25 %. So in two hours 75 % of S decayed.

Though I don't quite understand what is required in (a) and (b). In both cases they decay 1 : 2, since S decays faster. Maybe I miss something.
 
Physics news on Phys.org
Note that the rate of decay is proportional to the remaining number of nuclei.
 
  • Like
Likes moenste
Jonathan Scott said:
Note that the rate of decay is proportional to the remaining number of nuclei.
(a) t = 0. dN / dt = ?
NR = 100 % = NS.
T1/2 R = 2 hours
T1/2 S = 1 hour.
dN / dt = - λ N
dN / dt = - (ln 2 / T1/2) * N

R [dN / dt] = 9.6 * 10-5
S [dN / dt] = 1.9 * 10-4

R for S = 0.5 or 1 : 2.

(b) t = 2 hours
NR = 50 %, NS = 25 %.
T1/2 R = 2 hours
T1/2 S = 1 hour.
dN / dt = - λ N
dN / dt = - (ln 2 / T1/2) * N

R [dN / dt] = 9.6 * 10-5 * 0.5 = 4.8 * 10-5
S [dN / dt] = 1.9 * 10-4 * 0.25 = 4.75 * 10-5

R for S = 1 : 1.

Like this, right?
 
Probably (I haven't checked carefully) but that's far more complicated than you need, as you can simply use ratios between the two cases rather than working them out. As you've already used above, exponential decay rates vary as the inverse of the half life, so if the half lives are in the ratio m:n then the decay rates for the same number of nuclei are in the ratio n:m. Then after 2 hours the amount of R is 1/2 of the original and the amount of S is 1/4 of the original, so there's now twice as much R left as S.
 
  • Like
Likes moenste
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top