Rayleigh–Ritz method - Yukawa coulomb potential

AwesomeTrains
Messages
115
Reaction score
3
Hello everyone

Homework Statement


I have been given the testfunction \phi(\alpha, r)=\sqrt{(\frac{\alpha^3}{\pi})}exp(-\alpha r), and the potential V(r,\theta, \phi)=V(r)=-\frac{e^2}{r}exp(\frac{-r}{a})
Given that I have to write down the hamiltonian (in spherical coordinates I assume), and I have to calculate the angular momentum operator \hat{L}^2 \phi. (This is only a part of the whole problem. a) of a), b) and c) They should have used some other symbol for the testfunction than \phi, it's kinda confusing)

Homework Equations


Angular momentum operator in spherical coordinates.

The Attempt at a Solution


I guess the answer is 0, because \hat{L}^2 \phi contains derivations of \theta, \phi which the testfunction doesn't depend on. Is this true?
 
Last edited:
Physics news on Phys.org
AwesomeTrains said:
Hello everyone

I guess the answer is 0, because \hat{L}^2 \phi contains derivations of \theta, \phi which the testfunction doesn't depend on. Is this true?
Yes that's true. Another way to look at it is to realize that the test function is proportional to ##Y_0^0##.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top