Reading Haaser-Sullivan's Real Analysis

_DJ_british_?
Messages
42
Reaction score
0
Hi peeps!

I was reading Haaser-Sullivan's Real Analysis and came across a problem for which I have a doubt. A part of it is stated like this : " For all x in the closed interval [a,b] in R, |g'(x)|<=1 '' (g(x) is, of course, a real-valued function of a real variable and that's all we know about it). Does that mean that for all x in [a,b], g'(x) is defined or that for all x in [a,b] such that g'(x) is defined, |g(x)|<=1?

Thanks in advance!
 
Mathematics news on Phys.org


I would interpret it as saying that g'(x) is defined and between -1 and 1, for all x in [a,b].
 


That's what I thought, thanks! I haven't touched the formal definition of differentiability, but in Calculus I learned that a function was differentiable on [a,b] iff its derivative exists on [a,b]. So the condition stated above is enough to show differentiability on [a,b] and thus, continuity and contraction?
 


_DJ_british_? said:
That's what I thought, thanks! I haven't touched the formal definition of differentiability, but in Calculus I learned that a function was differentiable on [a,b] iff its derivative exists on [a,b]. So the condition stated above is enough to show differentiability on [a,b] and thus, continuity and contraction?
I think that all we can say is that since |g'(x)| is defined at every x in the interval, then |g(x)| is continuous on the same interval, but that g(x) is not necessarily continuous.

What do you mean by "contraction?" Are you saying that |g(x)| <= x?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top